题目描述

Z城市居住着很多只跳蚤。在Z城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有N+1个自然数。其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。

比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。

当确定N和M后,显然一共有MN张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。

输入输出格式

输入格式:

输入文件有且仅有一行,包括用空格分开的两个整数N和M。


输出格式:

输出文件有且仅有一行,即可以完成任务的卡片数。

1\le N\le M\le 10^81≤N≤M≤108,且M^N\le 10^{16}MN≤1016。

输入输出样例

输入样例#1:

2 4
输出样例#1:

12

说明

这12张卡片分别是:

(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4),

(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4)

Solution:

  本题容斥+暴力枚举。

  因为要向左移动1位,所以可以得到一个线性方程$a_1x_1+a_2x_2+…+a_nx_n=1$,满足有解的情况时,由裴蜀定理得$gcd(x_1,x_2…,x_n)=1$,我们只要满足任意两个数$gcd(x_i,x_j)=1$就好了。

  我们先求出总的方案数$m^n$,再从中减去所有的整体gcd不为1的情况,由于整体gcd不为1的情况必须满足gcd为m的约数。

  于是我们枚举m的约数作为整体公约数,对于约数$a$,共有$\frac{m}{a}$个含约数a的数,那么减去$(\frac{m}{a})^n$,然后由于会重复减,所以还得容斥,由于枚举的是m的因子,所以容斥时可以直接用莫比乌斯函数咯,所以只要求$\sum_\limits{d|m}^{m}{\mu(d)*(\frac{m}{d})^n}$就行啦。

代码:

/*Code by 520 -- 9.9*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
ll n,m,ans;
int prime[],cnt; int u(int x){
if(x==)return ;
int num=;
for(RE int i=;i*i<=x;i++){
if(x%i==) {
num++;
RE int p=;
while(x%i==) {
x/=i,p++;
if(p>)return ;
}
}
}
if(x>) num++;
return num&?-:;
} ll fast(ll s,ll k){
ll ans=;
while(k){
if(k&)ans=ans*s;
k>>=;
s*=s;
}
return ans;
} void dfs(int now,ll s){
if(now>cnt) {ans+=u(s)*fast(m/s,n);return;}
dfs(now+,s),dfs(now+,s*prime[now]);
} int main(){
cin>>n>>m;
int x=m;
for(RE int i=;i*i<=m;i++)
if(x%i==){
prime[++cnt]=i;
while(x%i==) x/=i;
}
if(x>) prime[++cnt]=x;
dfs(,);
cout<<ans;
return ;
}

P2231 [HNOI2002]跳蚤的更多相关文章

  1. 洛谷P2231 [HNOI2002]跳蚤 [数论,容斥原理]

    题目传送门 跳蚤 题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+ ...

  2. 洛谷 P2231 [HNOI2002]跳蚤

    https://www.luogu.org/problemnew/show/P2231 题意相当于:有n个位置a[1..n],每个位置可以填[1,m]中任一个整数,问共有多少种填法满足gcd(a[1] ...

  3. [BZOJ1220][POJ1091][HNOI2002]跳蚤

    [BZOJ1220][POJ1091][HNOI2002]跳蚤 试题描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长. ...

  4. luoguP2231 [HNOI2002]跳蚤

    题目链接 bzoj1220: [HNOI2002]跳蚤 题解 根据裴蜀定理,不定方程的解为未知数的gcd,所以选取的n个数的gcd为1 那么n - 1个数保证没有公约数为m的约数,枚举质因数容斥 质因 ...

  5. BZOJ1220 HNOI2002 跳蚤 【容斥原理+高精度】*

    BZOJ1220 HNOI2002 跳蚤 Description Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持 ...

  6. [HNOI2002]跳蚤

    题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+1个自然数.其中最 ...

  7. [HNOI2002]跳蚤 【容斥】

    题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+1个自然数.其中最 ...

  8. bzoj千题计划157:bzoj1220:[HNOI2002]跳蚤

    扩展欧几里得:ax+by=gcd(a,b) 一定有解 能跳到左边一格,即ax+by=-1 若a,b的gcd=1,则一定有解 所以问题转化为 求n个不大于m的数,他们与m的gcd=1 的方案数 容斥原理 ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. Qt-网易云音乐界面实现-1 窗口隐藏拖拽移动,自定义标题栏

    最近也换了公司,也换了新的工作,工资也象征性的涨了一点点,但是最近心里还是慌慌,不知道为什么,没有那种踏实感,感觉自己随时可以被抛弃的感觉.感觉自己在荒废时间,也感觉自己在浪费生命. 为了让自己在被抛 ...

  2. MYSQL 表转 JavaBean 工具类

    import org.apache.commons.lang.StringUtils; import java.io.BufferedWriter; import java.io.File; impo ...

  3. 零基础学python之函数与模块(附详细的代码和安装发布文件过程)

    代码重用——函数与模块 摘要:构建函数,创建模块,安装发布文件,安装pytest和PEP 8插件,确认PEP8兼容性以及纠错 重用代码是构建一个可维护系统的关键. 代码组是Python中对块的叫法. ...

  4. 2.4 Oracle之DCL的SQL语句之用户权限以及三大范式

    DCL   (Data Control Language,数据库控制语言)用于定义数据库权限 一.用户权限 1.1  建立用户以及授权: Eg :CREATE USER 用户名  IDENTIFIED ...

  5. Keycloak服务器安装和配置

    安装地址:https://www.keycloak.org/archive/downloads-4.4.0.html 参考文档:https://www.keycloak.org/docs/latest ...

  6. MATLAB复制图片时边框大的问题

    当使用MATLAB画图时,需要将图片复制到word中,会发现图片有一个白色的边框,在论文的排版中是一个影响美观的问题 例如: >> x = 0:10; >> y = sin(x ...

  7. 010 --MySQL查询优化器的局限性

    MySQL的万能"嵌套循环"并不是对每种查询都是最优的.不过还好,mysql查询优化器只对少部分查询不适用,而且我们往往可以通过改写查询让mysql高效的完成工作.在这我们先来看看 ...

  8. [转载]使用mpvue搭建一个初始小程序

    1. 初始化一个 mpvue 项目 现代前端开发框架和环境都是需要 Node.js 的,如果没有的话,请先下载 nodejs 并安装. 然后打开命令行工具: # 1. 先检查下 Node.js 是否安 ...

  9. 备份win10的驱动程序

    目录 折腾历程 怎么备份驱动 备份的驱动如何使用 关于驱动程序的OS兼容性 驱动程序的其他安装方式 1.折腾历程 从闲鱼上收了一个INSIGNIA的二合一笔记本,w7100,因原装win10性能不行自 ...

  10. 小米6x抓包小程序https请求

    1. charles安装证书,手机设置代理等这里不多讲了, 请进入下面链接查看详细 https://blog.csdn.net/manypeng/article/details/79475870 2. ...