题目描述

Z城市居住着很多只跳蚤。在Z城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有N+1个自然数。其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。

比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。

当确定N和M后,显然一共有MN张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。

输入输出格式

输入格式:

输入文件有且仅有一行,包括用空格分开的两个整数N和M。


输出格式:

输出文件有且仅有一行,即可以完成任务的卡片数。

1\le N\le M\le 10^81≤N≤M≤108,且M^N\le 10^{16}MN≤1016。

输入输出样例

输入样例#1:

2 4
输出样例#1:

12

说明

这12张卡片分别是:

(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4),

(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4)

Solution:

  本题容斥+暴力枚举。

  因为要向左移动1位,所以可以得到一个线性方程$a_1x_1+a_2x_2+…+a_nx_n=1$,满足有解的情况时,由裴蜀定理得$gcd(x_1,x_2…,x_n)=1$,我们只要满足任意两个数$gcd(x_i,x_j)=1$就好了。

  我们先求出总的方案数$m^n$,再从中减去所有的整体gcd不为1的情况,由于整体gcd不为1的情况必须满足gcd为m的约数。

  于是我们枚举m的约数作为整体公约数,对于约数$a$,共有$\frac{m}{a}$个含约数a的数,那么减去$(\frac{m}{a})^n$,然后由于会重复减,所以还得容斥,由于枚举的是m的因子,所以容斥时可以直接用莫比乌斯函数咯,所以只要求$\sum_\limits{d|m}^{m}{\mu(d)*(\frac{m}{d})^n}$就行啦。

代码:

/*Code by 520 -- 9.9*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
ll n,m,ans;
int prime[],cnt; int u(int x){
if(x==)return ;
int num=;
for(RE int i=;i*i<=x;i++){
if(x%i==) {
num++;
RE int p=;
while(x%i==) {
x/=i,p++;
if(p>)return ;
}
}
}
if(x>) num++;
return num&?-:;
} ll fast(ll s,ll k){
ll ans=;
while(k){
if(k&)ans=ans*s;
k>>=;
s*=s;
}
return ans;
} void dfs(int now,ll s){
if(now>cnt) {ans+=u(s)*fast(m/s,n);return;}
dfs(now+,s),dfs(now+,s*prime[now]);
} int main(){
cin>>n>>m;
int x=m;
for(RE int i=;i*i<=m;i++)
if(x%i==){
prime[++cnt]=i;
while(x%i==) x/=i;
}
if(x>) prime[++cnt]=x;
dfs(,);
cout<<ans;
return ;
}

P2231 [HNOI2002]跳蚤的更多相关文章

  1. 洛谷P2231 [HNOI2002]跳蚤 [数论,容斥原理]

    题目传送门 跳蚤 题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+ ...

  2. 洛谷 P2231 [HNOI2002]跳蚤

    https://www.luogu.org/problemnew/show/P2231 题意相当于:有n个位置a[1..n],每个位置可以填[1,m]中任一个整数,问共有多少种填法满足gcd(a[1] ...

  3. [BZOJ1220][POJ1091][HNOI2002]跳蚤

    [BZOJ1220][POJ1091][HNOI2002]跳蚤 试题描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长. ...

  4. luoguP2231 [HNOI2002]跳蚤

    题目链接 bzoj1220: [HNOI2002]跳蚤 题解 根据裴蜀定理,不定方程的解为未知数的gcd,所以选取的n个数的gcd为1 那么n - 1个数保证没有公约数为m的约数,枚举质因数容斥 质因 ...

  5. BZOJ1220 HNOI2002 跳蚤 【容斥原理+高精度】*

    BZOJ1220 HNOI2002 跳蚤 Description Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持 ...

  6. [HNOI2002]跳蚤

    题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+1个自然数.其中最 ...

  7. [HNOI2002]跳蚤 【容斥】

    题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+1个自然数.其中最 ...

  8. bzoj千题计划157:bzoj1220:[HNOI2002]跳蚤

    扩展欧几里得:ax+by=gcd(a,b) 一定有解 能跳到左边一格,即ax+by=-1 若a,b的gcd=1,则一定有解 所以问题转化为 求n个不大于m的数,他们与m的gcd=1 的方案数 容斥原理 ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. AltiumDesigner 热焊盘铺铜

    在layout中,引脚与大面积的铺铜完全连接容易造成过分散热而产生虚焊以及避免因过分散热而必须使用大功率焊接器,因此在大面积铺铜时,对于接地引脚,我们经常使用热焊盘.在AltiumDesigner 中 ...

  2. Jmeter中正则表达式提取器

    在使用Jmeter过程中,会经常使用到正则表达式提取器提取器,虽然并不直接涉及到请求的测试,但是对于数据的传递起着很大的作用,本篇博文就是主要讲解关于正则表达式及其在Jmeter的Sampler中的调 ...

  3. centos 开机自启设定:

    在sentos系统下,主要有两种方法设置自己安装的程序开机启动.1.把启动程序的命令添加到/etc/rc.d/rc.local文件中,比如下面的是设置开机启动httpd. #!/bin/sh # # ...

  4. 查看、生成 SSH 密钥用于安全登陆

    SSH 可以用来登陆服务器,远程执行命令,并用强加密算法编码保护通信安全,目前广泛应用于远程命令控制.文件加密传输等方面.SSH 登陆服务器的方法一般有两种:密码登陆和密钥登陆. 在受信任的设备上使用 ...

  5. 【NLP】使用bert

    # 参考 https://blog.csdn.net/luoyexuge/article/details/84939755 小做改动 需要: github上下载bert的代码:https://gith ...

  6. 学习笔记 | treap | splay

    目录 前言 treap 它的基本操作 前言 不会数据结构选手深深地感受到了来自treap的恶意QwQ 在听的时候感觉自己听得听懂的??大概只是听懂了它的意思 代码是怎么写都感觉写不好╮(╯﹏╰)╭ 菜 ...

  7. Kubernetes探索学习003--关于Kubernetes的Pod

    关于Pod 关于Pod我们要慢慢去体会去接受它去使用它,尤其是运维人员这块需要从逻辑上形成认识,首先理解Pod是Kubernetes项目的原子调度单位.为什么是Pod而不是单个DockerContai ...

  8. Vue 列表渲染及条件渲染实战

    条件渲染 有时候我们要根据数据的情况,决定标签是否进行显示或者有其他动作.最常见的就是,表格渲染的时候,如果表格没有数据,就显示无数据.如果有数据就显示表格数据. Vue 帮我们提供了一个v-if的指 ...

  9. 自定义UIView怎么注册销毁NSNotification通知

    问题描述:在使用天猫tangram框架后.部分组件自定义后会用到通知,但是在iOS 8 系统中,会崩溃? 原因分析:当对象挂掉后,要对应移除注册的通知. 否则当你重复执行发送通知的时候,在iOS8 系 ...

  10. 第31次Scrum会议(11/19)【欢迎来怼】

    一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/19 17:05~17:34,总计29min. 地 ...