NIO 的工作方式
NIO 的工作方式
BIO 带来的挑战
BIO : BIO 通信模型,通常由一个独立的 Acceptor 线程负责监听客户端的连接,接受到请求之后,为每个客户端创建一个新的线程进行链路处理,处理完成之后,线程销毁。是典型的 请求-应答通信模型。
BIO 即阻塞 IO,不管是磁盘IO 还是 网络 IO,数据在写入 OutputStream 或者从 InputStream 读取时都有可能会阻塞,一旦有阻塞,线程将会失去 CPU 的使用权,这在当前的大规模访问量和有性能要求的情况下是不能被接受的。
虽然当前的网络IO 有一些解决方法,如一个客户端对应一个处理线程,出现阻塞时只是一个线程阻塞而不会影响到其他线程的工作;还有问了减少系统线程开销,使用线程池的办法减少线程创建和回收成本,但是在一些场景下仍然无法解决。
如:当前一些需要大量 HTTP 长连接的情况,像淘宝现在使用的 web 旺旺,服务端需要同时保持几百万的 HTTP 连接,但并不是每时每刻这些连接都需要传输数据,在这种情况下不可能同时创建这么多线程来保持连接.
即使线程数量不是问题,也仍然会有一些问题无法避免:比如我们想给某些客户端更高的服务优先级,很难通过设计线程的优先级来完成。
另外一种情况是,每个客户端的请求在服务端可能需要访问一些竞争资源,这些客户端在不同的线程中,因此需要同步,要实现这种同步操作远比单线程复杂得多。以上这些情况都说明,我们需要一种新的 IO 操作方式。
NIO 的工作机制
首先看下 NIO 相关的类图:
图中有两个关键的类:Selector 和 Channel,他们是 NIO 中两个核心概念。
我们使用城市交通工具来描述 NIO 的工作方式。这里的 Channel 比 Socket 更加具体,可以比喻为某种具体的交通工具,如汽车,而把 Selector 理解为车辆运行调度系统,它负责监控每辆车的运行状态,是未出站还是在路上等。也就是 Selector 可以轮询每个 Channel 的状态。这里还有一个 Buffer 类,它比 Stream 更加具体的概念,Stream 代表座位,但没有描述座位是什么,以及是否还有座位。而 NIO 引入了 Channel、Selector 、Buffer 就是想把这些信息具体化,让程序员有机会去控制他们。
例如:当我们调用 write() 方法向 sendQ 中写入数据时,当一次写入的数据超过了 SendQ 的长度时,需要按照 SendQ 的长度进行分割,在这个过程中需要将用户地址和内核地址空间进行切换,而这个切换是你不能控制的,但在 Buffer 中我们可以自定义 Buffer 容量、是否扩容以及如何扩容等。
下面 show me the code,看下实际是怎么工作的:
public void selector() throws IOException {
ByteBuffer buffer = ByteBuffer.allocate(1024);
Selector selector = Selector.open();
ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.configureBlocking(false);//设置为非阻塞方式
ssc.socket().bind(new InetSocketAddress(8080));
ssc.register(selector, SelectionKey.OP_ACCEPT);// 注册监听的事件
while(true){
Set selectedKeys = selector.selectedKeys();// 获取所有 key 集合
Iterator it = selectedKeys.iterator();
while (it.hasNext()) {
SelectionKey key = (SelectionKey) it.next();
if ((key.readyOps() & SelectionKey.OP_ACCEPT) == SelectionKey.OP_ACCEPT) {
ServerSocketChannel channel = (ServerSocketChannel) key.channel();
SocketChannel accept = channel.accept();
accept.configureBlocking(false);
accept.register(selector, SelectionKey.OP_READ);
it.remove();
} else if ((key.readyOps() & SelectionKey.OP_READ) == SelectionKey.OP_READ) {
SocketChannel channel = (SocketChannel) key.channel();
while (true) {
buffer.clear();
int n = channel.read(buffer);
if (n <= 0) {
break;
}
buffer.flip();
}
it.remove();
}
}
}
}
流程简析如下:调用 Selector 的静态方法创建一个选择器,创建一个服务端的 Channel,绑定到一个 Socket 对象,并把这个通信信道注册到选择器上,然后把通信信道设置为“非阻塞”模式。
然后就可以调用 Selector 的 selectedKeys 方法检查已经注册在这个选择器上的所有通信信道是否有事件发生。
如果有,将会返回所有的 SelectionKey ,通过这个对象的 channel() 方法可以获取对应的通信信道对象,从而读取通信的数据,而这里读取的数据是 buffer,这个 Buffer 就是我们可以控制的缓冲器。
在上面的这段程序中,将 Server 端的 监听连接请求的事件和处理请求的事件放在一个线程中,但是在事件应用中,我们通常会把他们放在两个线程中:一个线程专门负责监听客户端的连接请求,而且是以阻塞方式执行;另外一个线程专门负责处理请求,这个专门负责处理请求的线程才会真正采用 NIO 的方式,像 web 服务器 Tomcat 和 Jetty 都是使用这个处理方式。
Selector 可以同时监听一组通信信道(Channel)上的 IO 状态,前提是这个 Selector 已经注册到这些信道中。Selector 的 select() 方法检查已经注册的通信信道上 IO 是否已经准备好,如果没有至少一个信道 IO 状态有变化,那么 select 方法会阻塞等待或在超时时间后返回0。如果有多个信道有数据,那么将会把这些数据分配到对应的数据 Buffer 中。所以关键的地方是,有一个线程来处理所有连接的数据交互,每个连接的数据交互都不是阻塞方式,所以可同时处理大量的连接请求。
Buffer 的工作方式
前面介绍了 Selector 检测到通信信道 IO 有数据传输时,通过 select 方法取得 SocketChannel,将数据读取或写入 Buffer 缓冲区,下面介绍 Buffer 如何接收和写出数据。
简单理解:把 Buffer 当成是一个基本数据类型的元素列表,它通过几个变量来保存列表中数据的当前位置状态,有4个值--capacity、limit、position、mark
- capacity :缓冲区数组的长度
- position:下一个要操作的数据元素位置
- limit:缓冲区数组中不可操作的下一个元素的位置,limit<=capacity
- mark:用于记录上一次 position 的位置或者默认为0
1、起始位置:position = 0,capacity=limit=length 数组长度
2、写入3个数据之后,如图3;
3、图3 到 图4 是调用了 flip 方法之后,position 回到起始位置,limit取原position值,此时可以从缓冲区中正确读取这3个数据;
4、在下一次写入数据之前,调用 clear 方法,缓冲区的索引状态回到初始位置;
mark的作用呢?当我们调用 mark 方法时,它会记录当前 position 的前一个位置,当我们调用 reset 时,position 会恢复 mark 记录下来的值。
注意:通过 Channel 获取 IO 数据首先要经过操作系统的 Socket 缓冲区,再将数据复制到 Buffer 中,这个操作系统缓冲区就是底层 TCP 所关联的 RecvQ 或者 SendQ 队列,从操作系统缓冲区到用户缓冲区复制数据比较耗费性能,Buffer 提供了一种直接操作操作系统缓冲区的方式,即 ByteBuffer.allocateDirector(size),这个方法返回的 DirectByteBuffer 就是底层存储空间关联的缓冲区,它通过 Native 代码操作非 JVM 堆的内存空间。每次创建或释放的时候都调用一次 System.gc() 。注意,使用 DirectByteBuffer 可能会引起内存泄漏的问题。在数据量大,生命周期较长的情况下比较合适。
NIO 的数据访问方式
NIO 提供了两种访问文件的优化方法,FileChannel.transferTo/FileChannel.transferFrom;另一个是 FileChannel.map
FileChannel.transferXXX
与传统方式相比,减少了数据从内核到用户空间的复制,数据直接在内核空间中移动,在linux 中使用 sendFile 系统调用。FileChannel.map
FileChannel.map 将文件按照一定大小块映射为内存区域,当程序访问这个内存区域时,将直接操作这个文件数据,这种方式省去了数据从内核空间向用户空间复制的损耗。这种方式适合对大文件的只读性操作,如文件的MD5校验。炼丹师这种方式是和操作系统的底层 IO 实现相关,如以下代码:
public static void map(String[] args) {
int BUFFER_SIZE = 1024;
String fileName = "test.db";
long fileLength = new File(fileName).length();
int bufferCount = 1 + (int) (fileLength / BUFFER_SIZE);
MappedByteBuffer[] buffers = new MappedByteBuffer[bufferCount];
long remaining = fileLength;
for (int i=0;i<bufferCount;i++) {
RandomAccessFile file;
try {
file = new RandomAccessFile(fileName, "r");
buffers[i] = file.getChannel().map(FileChannel.MapMode.READ_ONLY, i * BUFFER_SIZE, Math.min(remaining, BUFFER_SIZE));
} catch (Exception e) {
e.printStackTrace();
}
remaining -= BUFFER_SIZE;
}
}
NIO 的工作方式的更多相关文章
- Java NIO的工作方式
1.BIO带来的挑战 BIO即阻塞IO,不管是磁盘IO,还是网络IO,数据在写入OutputStream或者从InputStream读取时都有可能发生阻塞,一旦有阻塞,当前线程将会被挂起,即线程进入非 ...
- 读书笔记-NIO的工作方式
读书笔记-NIO的工作方式 1.BIO是阻塞IO,一旦阻塞线程将失去对CPU的使用权,当前的网络IO有一些解决办法:1)一个客户端对应一个处理线程:2)采用线程池.但也会出问题. 2.NIO的关键类C ...
- NIO的工作方式
BIO带来的挑战 BIO 就是我们常说的阻塞I/O , 不论磁盘I/O 还是网络/O ,数据在写入OutputStream 或者从 InutStream 读取数据时都有可能会阻塞,一旦有了阻塞,线程就 ...
- Nio经典工作方式
public void selector() throws IOException { ByteBuffer buffer = ByteBuffer.allocate(1024); Selector ...
- Buffer的工作方式
1.Buffer的工作方式 前面<java NIO的工作方式>介绍了Selector检测到通信信道I/O有数据传输时,通过select()方法取得SocketChannel,将数据读取或写 ...
- dicom通讯的工作方式及dicom标准简介
本文主要讲述dicom标准及dicom通讯的工作方式.dicom全称医学数字图像与通讯 其实嘛就两个方面 那就是“存储”跟“通讯”. 文件数据组织方式 网络数据组织方式.文件数据组织方式就是解析静态 ...
- 通过iMindMap改善你的工作方式的教程
对于iMindMap 10,已经介绍了很多新增与改进的功能,你以为已经结束了?其实不然,本文,小编还会继续和你分享它的一个新功能与一个更新功能.这两个功能将在不经意间改善你的工作方式. 多媒体支持 在 ...
- 输入/输出系统的四种不同工作方式对CPU利用率比较
程序控制工作方式:输入/输出完全由CPU控制,整个I/O过程中CPU必须等待其完成,因此对CPU的能力限制很大,利用率较低 程序中断工作方式:CPU不再定期查询I/O系统状态,而是当需要I/O处理时再 ...
- 从一个简单例子来理解js引用类型指针的工作方式
<script> var a = {n:1}; var b = a; a.x = a = {n:2}; console.log(a.x);// --> undefined conso ...
随机推荐
- 【问题记录】— web页面调用本地程序
起因: 最近由于项目需要在web页面中调用本地部署的exe程序:进而对该功能实现做了对应了解:以及存在的问题进行记录. 要实现该功能就不得不说浏览器自定义协议:解决办法:那么它是什么呢? 浏览器自定义 ...
- 【MMT】ICLR 2020: MMT(Mutual Mean-Teaching)方法,无监督域适应在Person Re-ID上性能再创新高
原文链接 小样本学习与智能前沿 . 在这个公众号后台回复"200708",即可获得课件电子资源. 为了减轻噪音伪标签的影响,文章提出了一种无监督的MMT(Mutual Mean-T ...
- JZOJ2020年8月14日提高组反思
JZOJ2020年8月14日提高组反思 T1 看到题 一脸:我是谁,我在哪,我要干啥 看到字符串凉一半 还有查询修改 想到线段树但不会建模 暴力安排 T2 一开始觉得:水题 然后啪啪打脸 空间小,数据 ...
- Spring Boot + Redis 初体验
本文测试环境: Spring Boot 2.1.4.RELEASE + Redis 5.0.4 + CentOS 7 让程序先 run 起来 安装及配置 Redis 参考: How To Instal ...
- 初识python-名片管理系统v1.0
一.项目说明 本项目分享一个简单的名片管理系统,主要是通过实现简单的功能,来学习python基础. 具体功能有:新建名片.显示全部名片.查询.修改.删除名片 通过对名片的增删改查,来快速看懂pytho ...
- AutumnWater 秋水SRC平台
持续给自己挖坑,简单介绍一下AutumnWater 秋水SRC平台趴: SRC开源漏洞响应平台 AutumnWater 秋水SRC平台 后端使用Python-Flask(蓝图)编写 前端使用少量VUE ...
- 性能测试学习之路 (四)jmeter 脚本开发实战(JDBC &JMS &接口脚本 & 轻量级接口自动化测试框架)
1.业务级脚本开发 登录脚本->思路:在线程组下新建两个HTTP请求,一个是完成访问登录页,一个是完成登录的数据提交. 步骤如下: 1) 访问登录页 2) 提交登录数据的HTTP PS:对于 ...
- Leetcode学习笔记(2)
题目1 ID面试题 01.04 给定一个字符串,编写一个函数判定其是否为某个回文串的排列之一. 回文串是指正反两个方向都一样的单词或短语.排列是指字母的重新排列. 回文串不一定是字典当中的单词. 示例 ...
- python冒泡算法联系代码
root@(none):~/python# python maopao.py[6, 11, 13, 22, 99]root@(none):~/python# cat maopao.py #!/usr/ ...
- Python(一) 快速配置Python编译环境与第一个py文件程序
1. Python基本语法在此不熬述. 2. 到管网下载Python 3.6.x 版本,与本机匹配的版本,如本机是 win7 64 python-3.6.5-amd64 3. 下载IDE:Python ...