HugeGraph介绍

以下引自官方文档:

HugeGraph是一款易用、高效、通用的开源图数据库系统(Graph Database,GitHub项目地址), 实现了Apache TinkerPop3框架及完全兼容Gremlin查询语言, 具备完善的工具链组件,助力用户轻松构建基于图数据库之上的应用和产品。HugeGraph支持百亿以上的顶点和边快速导入,并提供毫秒级的关联关系查询能力(OLTP), 并可与Hadoop、Spark等大数据平台集成以进行离线分析(OLAP)。

HugeGraph典型应用场景包括深度关系探索、关联分析、路径搜索、特征抽取、数据聚类、社区检测、 知识图谱等,适用业务领域有如网络安全、电信诈骗、金融风控、广告推荐、社交网络和智能机器人等。

划重点:

- 基于TinkerPop3框架,兼容Gremlin查询语言

- OLTP(开源) 与 OLAP(商业版)

- 常用图应用支持—— 路径搜索、推荐等

架构介绍

架构图

HugeGraph包括三个层次的功能,分别是存储层、计算层和用户接口层。 HugeGraph支持OLTP和OLAP两种图计算类型

组件

HugeGraph的主要功能分为HugeCore、ApiServer、HugeGraph-Client、HugeGraph-Loader和HugeGraph-Studio等组件构成,各组件之间的通信关系如下图所示。

其中核心组件:

  • HugeCore :HugeGraph的核心模块,TinkerPop的接口主要在该模块中实现。
  • ApiServer :提供RESTFul Api接口,对外提供Graph Api、Schema Api和Gremlin Api等接口服务。
  • HugeGraph-Client:基于Java客户端驱动程序

生态组件:

  • HugeGraph-Loader:数据导入模块。HugeGraph-Loader可以扫描并分析现有数据,自动生成Graph Schema创建语言,通过批量方式快速导入数据。
  • HugeGraph-Studio:基于Web的可视化IDE环境。以Notebook方式记录Gremlin查询,可视化展示Graph的关联关系。HugeGraph-Studio也是本系统推荐的工具。

HugeGraph-Studio 看起来已经被抛弃了,研发团队正开发一个名为'hugegraph-hubble' 的新项目:

hugegraph-hubble is a graph management and analysis platform that provides features: graph data load, schema management, graph relationship analysis and graphical display.

根据官方的说明,hubble定义为图谱管理和分析平台,提供图谱数据加载、schema管理、图分析和可视化展示,目前正在研发中,预计2020年9月份会发布首个版本。

设计理念

常见的图数据表示模型有两种:

  • RDF(Resource Description Framework)模型: 学术界的选择,通过sparql来进行查询,jenagStore等等
  • 属性图(Property Graph)模型,工业界的选择,neo4jjanusgraph都是这种方案。

RDF是W3C标准,而Property Graph是工业标准,受到广大图数据库厂商的广泛支持。HugeGraph采用Property Graph,遵循工业标准。

HugeGraph存储概念模型详见下图:

主要包含几个部分:

  • Vertex(顶点),对应一个实体(Entity)
  • Vertex Label(顶点的类型),对应一个概念(Concept)
  • 属性(图里的name、age),PropertyKey
  • Edge边(图里的lives),对应RDF里的Relation

可扩展性

HugeGraph提供了丰富的插件扩展机制,包含几个维度的扩展项:

  • 后端存储
  • 序列化器
  • 自定义配置项
  • 分词器

插件实现机制

  1. HugeGraph提供插件接口HugeGraphPlugin,通过Java SPI机制支持插件化
  2. HugeGraph提供了4个扩展项注册函数:registerOptions()registerBackend()registerSerializer()registerAnalyzer()
  3. 插件实现者实现相应的Options、Backend、Serializer或Analyzer的接口
  4. 插件实现者实现HugeGraphPlugin接口的register()方法,在该方法中注册上述第3点所列的具体实现类,并打成jar包
  5. 插件使用者将jar包放在HugeGraph Server安装目录的plugins目录下,修改相关配置项为插件自定义值,重启即可生效

从案例深入源码

想要深入的理解一个系统的源码,先从具体的应用入手。先查看example代码:

https://github.com/hugegraph/hugegraph/blob/master/hugegraph-example/src/main/java/com/baidu/hugegraph/example/Example1.java

 public static void main(String[] args) throws Exception {
LOG.info("Example1 start!"); HugeGraph graph = ExampleUtil.loadGraph(); Example1.showFeatures(graph); Example1.loadSchema(graph);
Example1.loadData(graph);
Example1.testQuery(graph);
Example1.testRemove(graph);
Example1.testVariables(graph);
Example1.testLeftIndexProcess(graph); Example1.thread(graph); graph.close(); HugeFactory.shutdown(30L);
}

1. loadGraph

要使用hugegraph,需要先初始化一个HugeGraph对象,而LoadGraph 正是做这个的。

public static HugeGraph loadGraph(boolean needClear, boolean needProfile) {
if (needProfile) {
profile();
} registerPlugins(); String conf = "hugegraph.properties";
try {
String path = ExampleUtil.class.getClassLoader()
.getResource(conf).getPath();
File file = new File(path);
if (file.exists() && file.isFile()) {
conf = path;
}
} catch (Exception ignored) {
} HugeGraph graph = HugeFactory.open(conf); if (needClear) {
graph.clearBackend();
}
graph.initBackend(); return graph;
}
1.1 registerPlugins

其中 registerPlugins 注册插件,注意上面介绍的扩展机制。hugegraph所有的后端存储都需要通过插件注册。

 public static void registerPlugins() {
if (registered) {
return;
}
registered = true; RegisterUtil.registerCassandra();
RegisterUtil.registerScyllaDB();
RegisterUtil.registerHBase();
RegisterUtil.registerRocksDB();
RegisterUtil.registerMysql();
RegisterUtil.registerPalo();
}

注册主要是register配置、序列化器和backend,比如下面是mysql的。

public static void registerMysql() {
// Register config
OptionSpace.register("mysql",
"com.baidu.hugegraph.backend.store.mysql.MysqlOptions");
// Register serializer
SerializerFactory.register("mysql",
"com.baidu.hugegraph.backend.store.mysql.MysqlSerializer");
// Register backend
BackendProviderFactory.register("mysql",
"com.baidu.hugegraph.backend.store.mysql.MysqlStoreProvider");
}
1.2 HugeFactory.open

HugeFactory 是Hugraph的工厂类,支持传入Configuraion配置信息,构建一个HugeGraph实例,注意这里为了线程安全,签名采用synchronized

 public static synchronized HugeGraph open(Configuration config) {
HugeConfig conf = config instanceof HugeConfig ?
(HugeConfig) config : new HugeConfig(config);
String name = conf.get(CoreOptions.STORE);
checkGraphName(name, "graph config(like hugegraph.properties)");
name = name.toLowerCase();
HugeGraph graph = graphs.get(name);
if (graph == null || graph.closed()) {
graph = new StandardHugeGraph(conf);
graphs.put(name, graph);
} else {
String backend = conf.get(CoreOptions.BACKEND);
E.checkState(backend.equalsIgnoreCase(graph.backend()),
"Graph name '%s' has been used by backend '%s'",
name, graph.backend());
}
return graph;
}

这里顺带提下配置文件,通过代码看到,默认是读取hugegraph.properties.

1.3 HugeGraph 对象

HugeGraph是一个interface,继承gremlin的Graph接口,定义了图谱的Schema定义、数据存储、查询等API方法。从上面1.2可以看到,默认的实现是StandardHugeGraph

public interface HugeGraph extends Graph {

    public HugeGraph hugegraph();

    public SchemaManager schema();

    public Id getNextId(HugeType type);

    public void addPropertyKey(PropertyKey key);
public void removePropertyKey(Id key);
public Collection<PropertyKey> propertyKeys();
public PropertyKey propertyKey(String key);
public PropertyKey propertyKey(Id key);
public boolean existsPropertyKey(String key); ...
1.4 graph.clearBackend 与initBackend

clearBackend将后端数据清理,initBackend初始化基本的数据结构。

2. loadSchema

该方法,用来定义schema:

public static void loadSchema(final HugeGraph graph) {

        SchemaManager schema = graph.schema();

        // Schema changes will be commit directly into the back-end
LOG.info("=============== propertyKey ================");
schema.propertyKey("id").asInt().create();
schema.propertyKey("name").asText().create();
schema.propertyKey("gender").asText().create();
schema.propertyKey("instructions").asText().create();
schema.propertyKey("category").asText().create();
schema.propertyKey("year").asInt().create();
schema.propertyKey("time").asText().create();
schema.propertyKey("timestamp").asDate().create();
schema.propertyKey("ISBN").asText().create();
schema.propertyKey("calories").asInt().create();
schema.propertyKey("amount").asText().create();
schema.propertyKey("stars").asInt().create();
schema.propertyKey("age").asInt().valueSingle().create();
schema.propertyKey("comment").asText().valueSet().create();
schema.propertyKey("contribution").asText().valueSet().create();
schema.propertyKey("nickname").asText().valueList().create();
schema.propertyKey("lived").asText().create();
schema.propertyKey("country").asText().valueSet().create();
schema.propertyKey("city").asText().create();
schema.propertyKey("sensor_id").asUUID().create();
schema.propertyKey("versions").asInt().valueList().create(); LOG.info("=============== vertexLabel ================"); schema.vertexLabel("person")
.properties("name", "age", "city")
.primaryKeys("name")
.create();
schema.vertexLabel("author")
.properties("id", "name", "age", "lived")
.primaryKeys("id").create();
schema.vertexLabel("language").properties("name", "versions")
.primaryKeys("name").create();
schema.vertexLabel("recipe").properties("name", "instructions")
.primaryKeys("name").create();
schema.vertexLabel("book").properties("name")
.primaryKeys("name").create();
schema.vertexLabel("reviewer").properties("name", "timestamp")
.primaryKeys("name").create(); // vertex label must have the properties that specified in primary key
schema.vertexLabel("FridgeSensor").properties("city")
.primaryKeys("city").create(); LOG.info("=============== vertexLabel & index ================");
schema.indexLabel("personByCity")
.onV("person").secondary().by("city").create();
schema.indexLabel("personByAge")
.onV("person").range().by("age").create(); schema.indexLabel("authorByLived")
.onV("author").search().by("lived").create(); // schemaManager.getVertexLabel("author").index("byName").secondary().by("name").add();
// schemaManager.getVertexLabel("recipe").index("byRecipe").materialized().by("name").add();
// schemaManager.getVertexLabel("meal").index("byMeal").materialized().by("name").add();
// schemaManager.getVertexLabel("ingredient").index("byIngredient").materialized().by("name").add();
// schemaManager.getVertexLabel("reviewer").index("byReviewer").materialized().by("name").add(); LOG.info("=============== edgeLabel ================"); schema.edgeLabel("authored").singleTime()
.sourceLabel("author").targetLabel("book")
.properties("contribution", "comment")
.nullableKeys("comment")
.create(); schema.edgeLabel("write").multiTimes().properties("time")
.sourceLabel("author").targetLabel("book")
.sortKeys("time")
.create(); schema.edgeLabel("look").multiTimes().properties("timestamp")
.sourceLabel("person").targetLabel("book")
.sortKeys("timestamp")
.create(); schema.edgeLabel("created").singleTime()
.sourceLabel("author").targetLabel("language")
.create(); schema.edgeLabel("rated")
.sourceLabel("reviewer").targetLabel("recipe")
.create();
}

划重点:

- SchemaManager schema = graph.schema() 获取SchemaManager

- schema.propertyKey(NAME).asXXType().create() 创建属性

- schema.vertexLabel("person") // 定义概念

.properties("name", "age", "city") // 定义概念的属性

.primaryKeys("name") // 定义primary Keys,primary Key组合后可以唯一确定一个实体

.create();

- schema.indexLabel("personByCity").onV("person").secondary().by("city").create(); 定义索引

- schema.edgeLabel("authored").singleTime()

.sourceLabel("author").targetLabel("book")

.properties("contribution", "comment")

.nullableKeys("comment")

.create(); // 定义关系

3. loadData

创建实体,注意格式,K-V成对出现:

graph.addVertex(T.label, "book", "name", "java-3");

创建关系,Vertex的addEdge方法:

    Vertex james = tx.addVertex(T.label, "author", "id", 1,
"name", "James Gosling", "age", 62,
"lived", "San Francisco Bay Area"); Vertex java = tx.addVertex(T.label, "language", "name", "java",
"versions", Arrays.asList(6, 7, 8));
Vertex book1 = tx.addVertex(T.label, "book", "name", "java-1");
Vertex book2 = tx.addVertex(T.label, "book", "name", "java-2");
Vertex book3 = tx.addVertex(T.label, "book", "name", "java-3"); james.addEdge("created", java);
james.addEdge("authored", book1,
"contribution", "1990-1-1",
"comment", "it's a good book",
"comment", "it's a good book",
"comment", "it's a good book too");
james.addEdge("authored", book2, "contribution", "2017-4-28"); james.addEdge("write", book2, "time", "2017-4-28");
james.addEdge("write", book3, "time", "2016-1-1");
james.addEdge("write", book3, "time", "2017-4-28");

添加后,需要commit

4. testQuery 测试查询

查询主要通过GraphTraversal, 可以通过graph.traversal()获得:

public static void testQuery(final HugeGraph graph) {
// query all
GraphTraversal<Vertex, Vertex> vertices = graph.traversal().V();
int size = vertices.toList().size();
assert size == 12;
System.out.println(">>>> query all vertices: size=" + size); // query by label
vertices = graph.traversal().V().hasLabel("person");
size = vertices.toList().size();
assert size == 5;
System.out.println(">>>> query all persons: size=" + size); // query vertex by primary-values
vertices = graph.traversal().V().hasLabel("author").has("id", 1);
List<Vertex> vertexList = vertices.toList();
assert vertexList.size() == 1;
System.out.println(">>>> query vertices by primary-values: " +
vertexList); VertexLabel author = graph.schema().getVertexLabel("author");
String authorId = String.format("%s:%s", author.id().asString(), "11"); // query vertex by id and query out edges
vertices = graph.traversal().V(authorId);
GraphTraversal<Vertex, Edge> edgesOfVertex = vertices.outE("created");
List<Edge> edgeList = edgesOfVertex.toList();
assert edgeList.size() == 1;
System.out.println(">>>> query edges of vertex: " + edgeList); vertices = graph.traversal().V(authorId);
vertexList = vertices.out("created").toList();
assert vertexList.size() == 1;
System.out.println(">>>> query vertices of vertex: " + vertexList); // query edge by sort-values
vertices = graph.traversal().V(authorId);
edgesOfVertex = vertices.outE("write").has("time", "2017-4-28");
edgeList = edgesOfVertex.toList();
assert edgeList.size() == 2;
System.out.println(">>>> query edges of vertex by sort-values: " +
edgeList); // query vertex by condition (filter by property name)
ConditionQuery q = new ConditionQuery(HugeType.VERTEX);
PropertyKey age = graph.propertyKey("age");
q.key(HugeKeys.PROPERTIES, age.id());
if (graph.backendStoreFeatures()
.supportsQueryWithContainsKey()) {
Iterator<Vertex> iter = graph.vertices(q);
assert iter.hasNext();
System.out.println(">>>> queryVertices(age): " + iter.hasNext());
while (iter.hasNext()) {
System.out.println(">>>> queryVertices(age): " + iter.next());
}
} // query all edges
GraphTraversal<Edge, Edge> edges = graph.traversal().E().limit(2);
size = edges.toList().size();
assert size == 2;
System.out.println(">>>> query all edges with limit 2: size=" + size); // query edge by id
EdgeLabel authored = graph.edgeLabel("authored");
VertexLabel book = graph.schema().getVertexLabel("book");
String book1Id = String.format("%s:%s", book.id().asString(), "java-1");
String book2Id = String.format("%s:%s", book.id().asString(), "java-2"); String edgeId = String.format("S%s>%s>%s>S%s",
authorId, authored.id(), "", book2Id);
edges = graph.traversal().E(edgeId);
edgeList = edges.toList();
assert edgeList.size() == 1;
System.out.println(">>>> query edge by id: " + edgeList); Edge edge = edgeList.get(0);
edges = graph.traversal().E(edge.id());
edgeList = edges.toList();
assert edgeList.size() == 1;
System.out.println(">>>> query edge by id: " + edgeList); // query edge by condition
q = new ConditionQuery(HugeType.EDGE);
q.eq(HugeKeys.OWNER_VERTEX, IdGenerator.of(authorId));
q.eq(HugeKeys.DIRECTION, Directions.OUT);
q.eq(HugeKeys.LABEL, authored.id());
q.eq(HugeKeys.SORT_VALUES, "");
q.eq(HugeKeys.OTHER_VERTEX, IdGenerator.of(book1Id)); Iterator<Edge> edges2 = graph.edges(q);
assert edges2.hasNext();
System.out.println(">>>> queryEdges(id-condition): " +
edges2.hasNext());
while (edges2.hasNext()) {
System.out.println(">>>> queryEdges(id-condition): " +
edges2.next());
} // NOTE: query edge by has-key just supported by Cassandra
if (graph.backendStoreFeatures().supportsQueryWithContainsKey()) {
PropertyKey contribution = graph.propertyKey("contribution");
q.key(HugeKeys.PROPERTIES, contribution.id());
Iterator<Edge> edges3 = graph.edges(q);
assert edges3.hasNext();
System.out.println(">>>> queryEdges(contribution): " +
edges3.hasNext());
while (edges3.hasNext()) {
System.out.println(">>>> queryEdges(contribution): " +
edges3.next());
}
} // query by vertex label
vertices = graph.traversal().V().hasLabel("book");
size = vertices.toList().size();
assert size == 5;
System.out.println(">>>> query all books: size=" + size); // query by vertex label and key-name
vertices = graph.traversal().V().hasLabel("person").has("age");
size = vertices.toList().size();
assert size == 5;
System.out.println(">>>> query all persons with age: size=" + size); // query by vertex props
vertices = graph.traversal().V().hasLabel("person")
.has("city", "Taipei");
vertexList = vertices.toList();
assert vertexList.size() == 1;
System.out.println(">>>> query all persons in Taipei: " + vertexList); vertices = graph.traversal().V().hasLabel("person").has("age", 19);
vertexList = vertices.toList();
assert vertexList.size() == 1;
System.out.println(">>>> query all persons age==19: " + vertexList); vertices = graph.traversal().V().hasLabel("person")
.has("age", P.lt(19));
vertexList = vertices.toList();
assert vertexList.size() == 1;
assert vertexList.get(0).property("age").value().equals(3);
System.out.println(">>>> query all persons age<19: " + vertexList); String addr = "Bay Area";
vertices = graph.traversal().V().hasLabel("author")
.has("lived", Text.contains(addr));
vertexList = vertices.toList();
assert vertexList.size() == 1;
System.out.println(String.format(">>>> query all authors lived %s: %s",
addr, vertexList));
}

划重点

查询指定label的实体:
 vertices = graph.traversal().V().hasLabel("person");
size = vertices.toList().size();
根据primary-values查询实体:
 vertices = graph.traversal().V().hasLabel("author").has("id", 1);
List<Vertex> vertexList = vertices.toList();
查询edge:

查询所有edge:

GraphTraversal<Edge, Edge> edges = graph.traversal().E().limit(2);

根据ID查询edge:

	EdgeLabel authored = graph.edgeLabel("authored");
VertexLabel book = graph.schema().getVertexLabel("book");
String book1Id = String.format("%s:%s", book.id().asString(), "java-1");
String book2Id = String.format("%s:%s", book.id().asString(), "java-2"); String edgeId = String.format("S%s>%s>%s>S%s",
authorId, authored.id(), "", book2Id);
edges = graph.traversal().E(edgeId);

注意,edge的id由几个字段拼接起来的: "S%s>%s>%s>S%s",authorId, authored.id(), "", book2Id)

根据条件查询edge:

 q = new ConditionQuery(HugeType.EDGE);
q.eq(HugeKeys.OWNER_VERTEX, IdGenerator.of(authorId));
q.eq(HugeKeys.DIRECTION, Directions.OUT);
q.eq(HugeKeys.LABEL, authored.id());
q.eq(HugeKeys.SORT_VALUES, "");
q.eq(HugeKeys.OTHER_VERTEX, IdGenerator.of(book1Id)); Iterator<Edge> edges2 = graph.edges(q);
assert edges2.hasNext();
System.out.println(">>>> queryEdges(id-condition): " +
edges2.hasNext());
while (edges2.hasNext()) {
System.out.println(">>>> queryEdges(id-condition): " +
edges2.next());
}

可以指定DIRECTION,

5. 删除

删除Vetex,调用vetex自带的remove方法

       // remove vertex (and its edges)
List<Vertex> vertices = graph.traversal().V().hasLabel("person")
.has("age", 19).toList();
assert vertices.size() == 1;
Vertex james = vertices.get(0);
Vertex book6 = graph.addVertex(T.label, "book", "name", "java-6");
james.addEdge("look", book6, "timestamp", "2017-5-2 12:00:08.0");
james.addEdge("look", book6, "timestamp", "2017-5-3 12:00:08.0");
graph.tx().commit();
assert graph.traversal().V(book6.id()).bothE().hasNext();
System.out.println(">>>> removing vertex: " + james);
james.remove();
graph.tx().commit();
assert !graph.traversal().V(james.id()).hasNext();
assert !graph.traversal().V(book6.id()).bothE().hasNext();

删除关系,也类似:

    // remove edge
VertexLabel author = graph.schema().getVertexLabel("author");
String authorId = String.format("%s:%s", author.id().asString(), "11");
EdgeLabel authored = graph.edgeLabel("authored");
VertexLabel book = graph.schema().getVertexLabel("book");
String book2Id = String.format("%s:%s", book.id().asString(), "java-2"); String edgeId = String.format("S%s>%s>%s>S%s",
authorId, authored.id(), "", book2Id); List <Edge> edges = graph.traversal().E(edgeId).toList();
assert edges.size() == 1;
Edge edge = edges.get(0);
System.out.println(">>>> removing edge: " + edge);
edge.remove();
graph.tx().commit();
assert !graph.traversal().E(edgeId).hasNext();

小结

本文初步介绍了hugegraph设计理念、基本使用等。


作者:Jadepeng

出处:jqpeng的技术记事本--http://www.cnblogs.com/xiaoqi

您的支持是对博主最大的鼓励,感谢您的认真阅读。

本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

图数据库HugeGraph源码解读 (1) —— 入门介绍的更多相关文章

  1. go语言nsq源码解读一-基本介绍

    简单介绍一下nsq. 参考 http://feilong.me/2013/05/nsq-realtime-message-processing-system 的介绍:NSQ是由知名短链接服务商bitl ...

  2. hugegraph 源码解读 —— 索引与查询优化分析

    为什么要有索引 gremlin 其实是一个逐级过滤的运行机制,比如下面的一个简单的gremlin查询语句: g.V().hasLabel("label").has("pr ...

  3. AbstractQueuedSynchronizer源码解读--续篇之Condition

    1. 背景 在之前的AbstractQueuedSynchronizer源码解读中,介绍了AQS的基本概念.互斥锁.共享锁.AQS对同步队列状态流转管理.线程阻塞与唤醒等内容.其中并不涉及Condit ...

  4. seajs 源码解读

    之前面试时老问一个问题seajs 是怎么加载js 文件的 在网上找一些资料,觉得这个写的不错就转载了,记录一下,也学习一下 seajs 源码解读 seajs 简单介绍 seajs是前端应用模块化开发的 ...

  5. RequireJs 源码解读及思考

    写在前面: 最近做的一个项目,用的require和backbone,对两者的使用已经很熟悉了,但是一直都有好奇他们怎么实现的,一直寻思着读读源码.现在项目结束,终于有机会好好研究一下. 本文重要解读r ...

  6. String、StringBuffer、StringBuilder源码解读

    序 好长时间没有认真写博客了,过去的一年挺忙的.负责过数据库.线上运维环境.写代码.Code review等等东西挺多. 学习了不少多方面的东西,不过还是需要回归实际.加强内功,方能扛鼎. 去年学习M ...

  7. Jfinal-Plugin源码解读

    PS:cnxieyang@163.com/xieyang@e6yun.com 本文就Jfinal-plugin的源码进行分析和解读 Plugin继承及实现关系类图如下,常用的是Iplugin的三个集成 ...

  8. 从koa-session源码解读session本质

    前言 Session,又称为"会话控制",存储特定用户会话所需的属性及配置信息.存于服务器,在整个用户会话中一直存在. 然而: session 到底是什么? session 是存在 ...

  9. Prometheus 源码解读(一)

    Prometheus 源码解读(一) Prometheus 是云原生监控领域的事实标准,越来越来的开源项目开始支持 Prometheus 监控数据格式.从本篇开始,我将和大家一起阅读分析 Promet ...

随机推荐

  1. 解决redis秒杀超卖的问题

    我们再使用redis做秒杀程序的时候,解决超卖问题,是重中之重.以下是一个思路. 用上述思路去做的话,我们再用户点击秒杀的时候,只需要检测,kucun_count中是否能pop出数据,如果能pop出来 ...

  2. webStrom中配置nodejs

    1.安装nodejs 下载地址:node.js:https://nodejs.org/download/ 按照提示安装即可 2.安装WebStrom 按照提示安装即可 下载地址:webstorm:ht ...

  3. Python基础学习之环境搭建

    Python如今成为零基础编程爱好者的首选学习语言,这和Python语言自身的强大功能和简单易学是分不开的.今天我们将带领Python零基础的初学者完成入门的第一步——环境搭建.本文会先来区分几个在P ...

  4. Python学习周期 学习Python要多久?

    学习python编程需要多长时间?首先我们需要明确一点,在互联网技术领域,技术始终在不断的迭代升级,只要进入IT行业就要时刻保持学习的状态,才能不被技术进步的车轮碾压.我们目前讨论的python学习周 ...

  5. 解决android studio Gradle无法同步问题

    打开根目录build.gradle buildscript { repositories { // 添加阿里云 maven 地址 maven { url 'http://maven.aliyun.co ...

  6. websocket推送进度条百分比给前台

    说明:后台springboot项目 前台vue+element-UI 直接放代码: //别忘了开启springboot的websocket <dependency> <groupId ...

  7. 一分钟速学 | NMS, IOU 与 SoftMax

    非极大抑制 NMS的英文是Non-maximum suppression的缩写. 简单的说,就是模型给出了多个重叠在一起的候选框,我们只需要保留一个就可以了.其他的重叠的候选框就删掉了,效果可见下图: ...

  8. 关闭,centos yum的自动更新

    今天我虚拟机提示我满了,,,打开磁盘分析器一看,yum的更新目录满了,本地虚拟跟生产环境的版本完全一致,所以我也不打算更新,找一下命令,得先安装yum-cron ,然后再禁止更新 [root@loca ...

  9. LQB2013A02排它平方数

    这个题方向其实还算好找,就是枚举嘛 (这是一个填空题,所以六个for嵌套也无所谓,因为毕竟emmmm,不看时间) 这里是判断的代码: 需要把数字转化成字符串 void i2s(int x,string ...

  10. Django学习路32_创建管理员及内容补充+前面内容复习

    创建管理员 python manage.py createsuperuser   数据库属性命名限制 1.不能是python的保留关键字 2.不允许使用连续的下划线,这是由django的查询方式决定的 ...