zjnu1735BOB (单调队列,单调栈)
Description
Little Bob is a famous builder. He bought land and wants to build a house. Unfortunately, the problem is the
land’s terrain, it has a variable elevation.
The land is shaped like a rectangle, N meters wide and M meters long. It can be divided into N*M squares
(see the image). Bob’s house will be shaped like a rectangle that has sides parallel with the land’s edges and
its vertices coincide with the vertices of the squares. All the land covered by Bob’s house must be of equal
elevation to prevent it from collapsing.
Calculate the number of ways Bob can build his house!
Input
The first line of input contains integers N and M (1 <= N, M <= 1000).
Each of the following N lines contains M integers aij (1 <= aij <= 1000000000), respectively the height of each square of
land.
Warning: Please use faster input methods beacuse the amount of input is very large. (For example, use scanf
instead of cin in C++ or BufferedReader instead of Scanner in Java.)
Output
The first and only line of output must contain the required number from the task statement.
Sample Input
2 2 2
2 2 1
1 1 1
2 1 2
1 2 1
Sample Output
Hint
Clarification of the first example: Some of the possible house locations are rectangles with opposite vertices in (0,0)-
(1,1), (0,0)-(0,2) (height 2) i (2,0)-(2,2), (1,2)-(2,2) (height 1). The first number in the brackets represents the row number
and the second one the column number (0-indexed).
题意:给你一个n*m的矩阵,每一个格子都有自己的价值,让你在矩阵中找一些格子,使得矩形里的格子的价值都相同,问最多能找到的矩形数。
思路:如果是普通暴力的话,那么时间复杂度为O(n*m*m)爆了,所以要找其他方法。我们可以用单调队列做(单调栈也可以做的,其实它们两者的本质是一样的),这题所要维护的东西和之前求一个平面内的最大矩形面积不同,这里求的是最多的矩形个数,我们可以先把二维矩阵转化为一维,即对于每一行的格子,把上面和它价值相同的格子数作为它的高度。那么这个问题就转化成了有许多长方形格子放在地上,让你找到包含矩形底的矩形总个数。用单调队列的时候要维护三个值,q[][0]表示高度,q[][1]表示以它为右下角格子的矩形个数,q[][2]表示坐标,维护一个严格递增单调队列就行了。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 1005
int gra[maxn][maxn],a[maxn][maxn];
int q[1111111][3];
int main()
{
int n,m,i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
scanf("%d",&gra[i][j]);
a[i][j]=1;
if(i>1 && gra[i][j]==gra[i-1][j]){
a[i][j]+=a[i-1][j];
}
}
}
ll cnt=0;
int front,rear,qidian;
for(i=1;i<=n;i++){
gra[i][0]=-1;
for(j=1;j<=m;j++){
if(gra[i][j]==gra[i][j-1]){
while(front<=rear && q[rear][0]>=a[i][j]){
rear--;
}
rear++;
q[rear][0]=a[i][j];q[rear][2]=j;
if(rear==1){
q[rear][1]=a[i][j]*(j-qidian); //这里相当于底*高
}
else{
q[rear][1]=a[i][j]*(j-q[rear-1][2])+q[rear-1][1] ; //这里要加上队列里前一个高度比它低的矩形算出来的符合要求的矩形
}
cnt+=q[rear][1];
}
else{
front=1;rear=1;
qidian=j-1;
q[rear][0]=a[i][j];
q[rear][1]=a[i][j];
q[rear][2]=j;
cnt+=a[i][j];
}
}
}
printf("%lld\n",cnt);
}
return 0;
}
zjnu1735BOB (单调队列,单调栈)的更多相关文章
- 单调队列 && 单调栈
单调队列 && 单调栈 单调队列 维护某个滑动区间的min or max,可用于dp的优化 以维护min为例,采用STL双端队列实现 每次加入元素x前 先检查队首元素==滑动后要删除的 ...
- 联赛模拟测试18 A. 施工 单调队列(栈)优化DP
题目描述 分析 对于 \(Subtask\ 1\),可以写一个 \(n^3\) 的 \(DP\),\(f[i][j]\) 代表第 \(i\) 个建筑高度为 \(j\) 时的最小花费,随便转移即可 时间 ...
- 数据结构录 之 单调队列&单调栈。
队列和栈是很常见的应用,大部分算法中都能见到他们的影子. 而单纯的队列和栈经常不能满足需求,所以需要一些很神奇的队列和栈的扩展. 其中最出名的应该是优先队列吧我觉得,然后还有两种比较小众的扩展就是单调 ...
- 单调队列&单调栈
单调队列 例题: Poj 2823给定一个数列,从左至右输出每个长度为m的数列段内的最小数和最大数.数列长度:N<=106,m<=N 对于单调队列,我们这样子来定义: 1.维护区间最值 2 ...
- 数据结构录 之 单调队列&单调栈。(转)
http://www.cnblogs.com/whywhy/p/5066306.html 队列和栈是很常见的应用,大部分算法中都能见到他们的影子. 而单纯的队列和栈经常不能满足需求,所以需要一些很神奇 ...
- 大视野 1012: [JSOI2008]最大数maxnumber(线段树/ 树状数组/ 单调队列/ 单调栈/ rmq)
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 9851 Solved: 4318[Submi ...
- 小Z爱序列(NOIP信(sang)心(bin)赛)From FallDream(粗制单调队列&单调栈的算法解析)
原题: 小Z最擅长解决序列问题啦,什么最长公共上升然后下降然后上升的子序列,小Z都是轻松解决的呢. 但是小Z不擅长出序列问题啊,所以它给了你一道签到题. 给定一个n个数的序列ai,你要求出满足下述条件 ...
- POJ 3494 Largest Submatrix of All 1’s 单调队列||单调栈
POJ 3494 Largest Submatrix of All 1’s Description Given a m-by-n (0,1)-matrix, of all its submatrice ...
- 单调队列&单调栈归纳
单调队列 求长度为M的区间内的最大(小)值 单调队列的基本操作,也就是经典的滑动窗口问题. 求长度为M的区间内最大值和最小值的最大差值 两个单调队列,求出长度为M的区间最大最小值的数组,分别求最大最小 ...
- 【NOIP数据结构专项】单调队列单调栈
[FZYZ P1280 ][NOIP福建夏令营]矩形覆盖 Description 有N个矩形,矩形的底边边长为1,且均在X轴上,高度给出,第i个矩形的高为h[i],求最少需要几个矩形才能覆盖这个图形. ...
随机推荐
- Go GRPC 入门(二)
前言 最近较忙,其实准备一篇搞定的 中途有事,只能隔了一天再写 正文 pb.go 需要注意的是,在本个 demo 中,客户端与服务端都是 Golang,所以在客户端与服务端都公用一个 pb.go 模板 ...
- Laya 踩坑日记-人物模型穿模,模型显示不正常
最近做游戏,人物要跑到很远的位置,z轴距离大概有20000个单位,然后就发现一个bug,到远处人物模型穿了,而且没办法改,这就尴尬了 Z轴对应值 0 100000 100000 当距离零点 ...
- Hbase Region合并
业务场景: Kafka+SparkStreaming+Hbase由于数据大量的迁移,再加上业务的改动,新增了很多表,导致rerigon总数接近4万(36个节点) 组件版本: Kafka:2.1.1 S ...
- 【Jboss】一台服务器上如何部署多个jboss
一台服务器上如何部署多个jboss呢?直接把整个部署环境copy一份到相应的目录下? 这样只是前提,但是启动复制后的jboss就会发现,有很多端口被占用 3873,8080,8009,8443,808 ...
- 【Oracle】Script to Collect DRM Information (drmdiag.sql) (文档 ID 1492990.1)
脚本对应如下: The following (drmdiag.sql) is a script to collect information related to DRM (Dyanamic Reso ...
- 如何查看U盘的VID和PID
1.将USB插入电脑 2.右键单击[此电脑],选择[管理] 3.在弹出的对话框中选择[设备管理器],选择[USB大容量存储设备] 4.右键单击[USB大容量存储设备],选择[属性],在弹出的对话框中选 ...
- ModelForm的基本用法:
一.ModelForm的基本用法示例: from django import forms from app01 import models class BookModelForm(forms.Mode ...
- pytorch——不用包模拟简单线性预测,数据类型,创建tensor,索引与切片
常见的学习种类 线性回归,最简单的y=wx+b型的,就像是调节音量大小.逻辑回归,是否问题.分类问题,是猫是狗是猪 最简单的线性回归y=wx+b 目的:给定大量的(x,y)坐标点,通过机器学习来找出最 ...
- 配置Charles 设置手机代理并允许https请求
前言: 在h5开发调试时,为实现手机app访问localhost地址,可以使用ip地址的方式,但一般公司app出于安全考虑,会限制只能访问其自有域名.因此,使用charles代理的方式 步骤 用手机代 ...
- JVM(八)执行引擎相关内容
一:两种解释器 JAVA字节码解释器: java字节码===>c++代码==>硬编码. 首先.java文件编译成字节码,遍历每行的字节码指令,因为每个字节码指令的含义都是固定的所以可以根据 ...