Problem Description
Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  

Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that




and the total cost of each subset is minimal.
 

Input
The input contains multiple test cases.

In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 

For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

 

Output
For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

 

Sample Input

2
3 2
1 2 4
4 2
4 7 10 1
 

Sample Output

Case 1: 1
Case 2: 18
题意:给你n个数字,要分成m个子集合,子集合之间可以共用相同的元素,子集合的代价为该集合最大的数和最小的数的差的平方,问你最小的子集合的总代价是多少。
思路:因为集合里的数的顺序并不是按顺序的,所以可以先排序,然后用dp[i][j]表示前i个数分成j个集合所得到的最小代价,和邮局那题有点相似,要用四边形优化,不然会超时,看别人的写法发现斜率优化更快,学完后再来写吧。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 999999999
int a[10060],dp[10060][5060],s[10060][5060];
int main()
{
int n,m,i,j,T,len,k,num1=0;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
}
sort(a+1,a+1+n);
for(i=1;i<=n;i++){
dp[i][1]=(a[i]-a[1])*(a[i]-a[1]);
s[i][1]=1;
}
for(j=2;j<=m;j++){
dp[j][j]=0;
s[n+1][j]=n;
for(i=n;i>j;i--){
dp[i][j]=inf;
for(k=s[i][j-1];k<=s[i+1][j];k++){
if(dp[i][j]>dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1])){
dp[i][j]=dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1]);
s[i][j]=k;
}
}
}
}
num1++;
printf("Case %d: %d\n",num1,dp[n][m]);
}
return 0;
}

hdu3480 Division的更多相关文章

  1. HDU3480 Division —— 斜率优化DP

    题目链接:https://vjudge.net/problem/HDU-3480 Division Time Limit: 10000/5000 MS (Java/Others)    Memory ...

  2. hdu3480 Division(dp平行四边形优化)

    题意:将n个数分成m段,每段的代价为最大值减最小值的平方,为代价最小是多少n<=10000 ,m<=5000 题解:先拍好序,从小到大,这样绝对是花费最小的,不过怎么样来做呢?一定很容易想 ...

  3. HDU-3480 Division (四边形不等式优化DP)

    题目大意:将n个数分成m组,将每组的最大值与最小值的平方差加起来,求最小和. 题目分析:先对数排序.定义状态dp(i,j)表示前 j 个数分成 i 组得到的最小和,则状态转移方程为dp(i,j)=mi ...

  4. [HDU3480] Division [四边形不等式dp]

    题面: 传送门 思路: 因为集合可以无序选择,所以我们先把输入数据排个序 然后发先可以动归一波 设$dp\left[i\right]\left[j\right]$表示前j个数中分了i个集合,$w\le ...

  5. HDU3480 Division——四边形不等式或斜率优化

    题目大意 将N个数分成M部分,使每部分的最大值与最小值平方差的和最小. 思路 首先肯定要将数列排序,每部分一定是取连续的一段,于是就有了方程 $\Large f(i,j)=min(f(i-1,k-1) ...

  6. HDU2829 Lawrence —— 斜率优化DP

    题目链接:https://vjudge.net/problem/HDU-2829 Lawrence Time Limit: 2000/1000 MS (Java/Others)    Memory L ...

  7. HDU3480:Division——题解

    http://acm.hdu.edu.cn/showproblem.php?pid=3480 将一列数划分成几个集合,这些集合的并集为该数列,求每个数列的(最大值-最小值)^2的和的最小值. 简单的d ...

  8. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  9. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

随机推荐

  1. HBASE Shell基本命令

    定义 HBASE是一种分布式.可扩展.支持海量数据存储的NoSQL数据库. HBASE数据模型 逻辑上,HBASE的数据模型同关系型数据库类似,数据存储到一张表中,有行有列,但是从HBASE的底层物理 ...

  2. File Inclusion - Pikachu

    概述: 文件包含,是一个功能.在各种开发语言中都提供了内置的文件包含函数,其可以使开发人员在一个代码文件中直接包含(引入)另外一个代码文件. 比如 在PHP中,提供了: include(),inclu ...

  3. AVA编程中button按钮,actionlistener和mouseClicked区别

    在java的编程中,对于按钮button 有两个事件: 1.actionPerformed 2.mouseClicked 区别: actionPerformed:一般事件,仅侦听鼠标左键的单击事件,右 ...

  4. JavaSE 基础知识(常识概念 + 基础语法)问答总结/面试题 —— 讲给应届生的 Java 开源知识项目

    写在最前面 这个项目是从20年末就立好的 flag,经过几年的学习,回过头再去看很多知识点又有新的理解.所以趁着找实习的准备,结合以前的学习储备,创建一个主要针对应届生和初学者的 Java 开源知识项 ...

  5. MYSQL面试题-索引

    MYSQL面试题-索引 引自B站up编程不良人:https://www.bilibili.com/video/BV19y4y127h4 一.什么是索引? 官方定义:索引是一种帮助mysql提高查询效率 ...

  6. Python爬虫学习笔记(一)

    概念: 使用代码模拟用户,批量发送网络请求,批量获取数据. 分类: 通用爬虫: 通用爬虫是搜索引擎(Baidu.Google.Yahoo等)"抓取系统"的重要组成部分. 主要目的是 ...

  7. Android 开发学习进程0.27 kotlin使用 和viewbinding的使用

    kotlin-android-extensions 插件被废弃 笔者曾经尝试写过一部分的kotlin代码 主要是项目中一些代码是kotlin完成的,其中我认为 kotlin的kotlin-androi ...

  8. 前端面试之HTTP

    前端面试之HTTP的基本性质 1 HTTP代理 在浏览器和服务器之间,有许多计算机和其他设备转发了HTTP消息.简而言之,他们中间的部分就是代理! 代理的作用 缓存(可以是公开的也可以是私有的,像浏览 ...

  9. 【LinxuShell】tar命令的用法

  10. 在Centos7上安装Python+Selenium+Chrome+Chromedriver

    1.下载Chrome 上一篇文章已经演示过了Python+Selenium+Firefox+Geckodriver安装步骤并通过自动化脚本打开百度 因此当前只需要安装Chrome和Chromedriv ...