As you are probably well aware, in Byteland it is always the military officer's main worry to order his soldiers on parade correctly. In Bitland ordering soldiers is not really such a problem. If a platoon consists of n men, all of them have different rank
(from 1 - lowest to n - highest) and on parade they should be lined up from left to right in increasing order of rank.

Sounds simple, doesn't it? Well, Msgt Johnny thought the same, until one day he was faced with a new command. He soon discovered that his elite commandos preferred to do the fighting, and leave the thinking to their superiors. So, when at the first rollcall
the soldiers lined up in fairly random order it was not because of their lack of discipline, but simply because they couldn't work out how to form a line in correct order of ranks. Msgt Johnny was not at all amused, particularly as he soon found that none
of the soldiers even remembered his own rank. Over the years of service every soldier had only learned which of the other soldiers were his superiors. But Msgt Johnny was not a man to give up easily when faced with a true military challenge. After a moment's
thought a solution of brilliant simplicity struck him and he issued the following order: "men, starting from the left, one by one, do: (step forward; go left until there is no superior to the left of you; get back in line).". This did indeed get the
men sorted in a few minutes. The problem was solved... for the time being.

The next day, the soldiers came in exactly the same order as the day before, and had to be rearranged using the same method. History repeated. After some weeks, Msgt Johnny managed to force each of his soldiers to remember how many men he passed when going
left, and thus make the sorting process even faster.

If you know how many positions each man has to walk to the left, can you try to find out what order of ranks the soldiers initially line up in?

Input

The first line of input contains an integer t<=50, the number of test cases. It is followed by t test cases, each consisting of 2 lines. The first line contains a single integer n (1<=n<=200000). The second line contains n space separated integers wi,
denoting how far the i-th soldier in line must walk to the left when applying Msgt Johnny's algorithm.

Output

For each test case, output a single line consisting of n space separated integers - the ranks of the soldiers, given from left to right in their initial arrangement.

Example

 Input:

2

3

0 1 0

5

0 1 2 0 1

Output:

2 1 3

3 2 1 5 4 

这题以前是用线段树做的,现在用树状数组来做,这里学到了求逆序数的方法,是用二分来做,因为空位的个数是从左往右一次递增的,所以只要找到等于i-a[i]这个空位的,且之前没有被访问过的(也可以认为是最小的位置),该位置就是i所对应的位置。

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define maxn 200006
int a[maxn],b[maxn],n,pos[maxn],vis[maxn];
int lowbit(int x){
return x&(-x);
}
void update(int pos,int num)
{
while(pos<=maxn){
b[pos]+=num;pos+=lowbit(pos);
}
} int getsum(int pos)
{
int num=0;
while(pos>0){
num+=b[pos];pos-=lowbit(pos);
}
return num;
} int find(int l,int r,int x)
{
int mid;
while(l<=r){
mid=(l+r)/2;
if(getsum(mid)==x){
if(vis[mid]==0)return mid;
else {
r=mid-1;continue;
}
}
if(getsum(mid)>x)r=mid-1;
else l=mid+1;
}
} int main()
{
int m,i,j,T,t;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
b[i]=lowbit(i);
vis[i]=0;
}
for(i=n;i>=1;i--){
t=i-a[i];
j=find(1,n,t);
pos[i]=j;
vis[j]=1;
update(j,-1);
}
for(i=1;i<=n;i++){
if(i==n)printf("%d\n",pos[i]);
else printf("%d ",pos[i]);
}
}
return 0;
}

SPOJ 227 Ordering the Soldiers的更多相关文章

  1. SPOJ 227 Ordering the Soldiers 线段树 / 树状数组

    题意:设原数组为a[i],pos[i]代表第 i 个位置之前有多少个数比a[i]大,求原数组a[i]. 这个题意是看了别人的题解才明白,我自己没读出来…… 方法:假设我们从左往右放,因为后面的数还有可 ...

  2. spoj-ORDERS - Ordering the Soldiers

    ORDERS - Ordering the Soldiers As you are probably well aware, in Byteland it is always the military ...

  3. 树状数组求第K小值 (spoj227 Ordering the Soldiers &amp;&amp; hdu2852 KiKi&#39;s K-Number)

    题目:http://www.spoj.com/problems/ORDERS/ and pid=2852">http://acm.hdu.edu.cn/showproblem.php? ...

  4. spoj 227

    留着 #include <cstdio> #include <cstring> #include <cstdlib> #define lson l, m, rt & ...

  5. Ordering the Soldiers 题解

    CodeChef:ORDERS 简化题意: \(n\) 个人排队,给定每个人需要向左移动几个,求最终排列. 即还原逆序对. 错误想法 既然知道每个人向左移动 \(a_i\) 个,那就相当于让他的排名 ...

  6. Android Weekly Notes Issue #227

    Android Weekly Issue #227 October 16th, 2016 Android Weekly Issue #227. 本期内容包括: Google的Mobile Vision ...

  7. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  8. SPOJ DQUERY D-query(主席树)

    题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...

  9. Scala比较器:Ordered与Ordering

    在项目中,我们常常会遇到排序(或比较)需求,比如:对一个Person类 case class Person(name: String, age: Int) { override def toStrin ...

随机推荐

  1. 牛客网NC15二叉树的层次遍历

    题目 给定一个二叉树,返回该二叉树层序遍历的结果,(从左到右,一层一层地遍历) 例如: 给定的二叉树是{3,9,20,#,#,15,7}, 该二叉树层序遍历的结果是 [ [3], [9,20], [1 ...

  2. SpringBoot嵌入式Servlet容器

    SpringBoot默认是将Tomcat作为嵌入式的servlet容器. 问题: 如何修改嵌入式的servlet容器? 1)在配置文件中设置对应的属性值 server.port=8081 # Tomc ...

  3. Tomcat的整体架构

    Tomcat通过连接器和容器这两个核心组件完成整体工作,连接器负责处理socket连接和网络字节流与Request和Response对象的转化:容器负责加载和管理Servlet,以及具体处理Reque ...

  4. 【RAC】双节点RAC搭建

    本文主要是双节点的RAC进行搭建,根据黄伟老师的视频进行总结和使用. 搭建环境: 1.两台安装好Linux_x64系统的服务器 2.IP设置 注意:Priv-IP的IP是自己一个网段,而剩下的SCAN ...

  5. 【Oracle】什么是DRM,怎么关闭

    DRM 分析及案例讲解 什么是DRM DRM(Dynamic Resource management)是oracle10.10.2里面推出来的一个新特性,一直到现在最新的12cR1,都存在,且bug非 ...

  6. 【ASM】从asm中复制文件到本地,或者从本地到asm中方法

    工作中,有时需要把文件从ASM中复制到文件系统中或者反过来,做一些维护操作,本文介绍了4种复制文件的的方法: ASMCMD中的cp命令(11g) dbms_file_transfer包 rman的co ...

  7. Vijos-P1103题解【线段树】

    本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/ 题目出处: https://www.vijos.org/p/1103 题目描述: 一条马路从数轴0到L,每 ...

  8. 面向对象的延伸与Java内部定义类的应用

    识别类 传统的过程化程序设计,必须从顶部的main函数开始编写程序,在面向对象程序设计时没有所谓的"顶部".首先从设计类开始,然后再往每个类中添加方法. 识别类的规则是在分析问题的 ...

  9. 手淘架构组最新实践 | iOS基于静态库插桩的⼆进制重排启动优化 抖音研发实践:基于二进制文件重排的解决方案 APP启动速度提升超15% 编译期插桩

    抖音研发实践:基于二进制文件重排的解决方案 APP启动速度提升超15% 原创 Leo 字节跳动技术团队 2019-08-09 https://mp.weixin.qq.com/s/Drmmx5JtjG ...

  10. python RecursionError: maximum recursion depth exceeded while calling

    import copyimport sys # 导入sys模块sys.setrecursionlimit(8192) # 将默认的递归深度修改为r = sys.getrecursionlimit()_ ...