【noi 2.6_9277】Logs Stacking堆木头(DP)
题意:给出在最底层的木头的个数,问有多少种堆放木头的方式。要求木头必须互相挨着在一起。
解法:f[i]表示最底层i个木头的堆放木头的方式。注意递推的思想!
只需知道上一层堆放0~i-1个(即最底层堆放i个木头)的方式数就可以利用加法原理得到f[i]。
方法一、用前缀和求解。
由于要求木头挨在一起,上层为1个时,相应有i-1个位置可放;2个时,相应为i-2。即:f[i]=f[0]+f[1]*(i-1)+f[2]*(i-2)...+f[i-1] f[i-1]=f[0]+f[1]*(i-2)+f[2]+(i-3)... +f[i-2] ==》 f[i]=f[i-1]+f[1]+f[2]+...+f[i-1]=f[i-1]+sum[i-1](sum[i]表示从f[1]到f[i]的和)
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 200000
7 #define mod 100000
8 int sum[N],f[N];
9
10 int main()
11 {
12 int T,n;
13 scanf("%d",&T);
14 f[0]=1,sum[0]=0;//sum[i]:f[1~i]
15 for (int i=1;i<=N;i++)
16 {
17 f[i]=(f[i-1]+sum[i-1])%mod;
18 sum[i]=(sum[i-1]+f[i])%mod;
19 }
20 while (T--)
21 {
22 scanf("%d",&n);
23 printf("%d\n",f[n]);
24 }
25 return 0;
26 }
1
方法二、用斐波拉契数列。
由上面的式子可推出——f[i]=f[i-1]+(f[i-1]-f[i-2])+f[i-1]=3f[i-1]-f[i-2] 这就是斐波拉契数列的奇数项通式,而推导我不知道,但还是能发现i=1~...时,f[]=1,2,5,12,34.. 而斐波拉契数列为1,1,2,3,5,8,13,21,34...奇数项重合的。
【noi 2.6_9277】Logs Stacking堆木头(DP)的更多相关文章
- 【OpenJudge9277】【递推】Logs Stacking堆木头
Logs Stacking堆木头 总时间限制: 1000ms 内存限制: 131072kB [描述] Daxinganling produces a lot of timber. Before loa ...
- 【Openjudge 9277 Logs Stacking堆木头】 题解
题目链接:http://noi.openjudge.cn/ch0206/9277/ ... #include <algorithm> #include <iostream> # ...
- 基于HTML5堆木头游戏
今天要来分享一款很经典的HTML5游戏——堆木头游戏,这款游戏的玩法是将木头堆积起来,多出的部分将被切除,直到下一根木头无法堆放为止.这款HTML5游戏的难点在于待堆放的木头是移动的,因此需要你很好的 ...
- UVa 103 - Stacking Boxes(dp求解)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 【Luogu】P2254瑰丽华尔兹(堆优化DP)
题目链接 我也不知道为什么脑子一抽就想了个堆优化……然后贼慢…… 因为上午听不懂wys的电音专场(快速傅立叶变换),然后就做了这么一道题. 首先朴素DP很sb都能秒出.就是枚举时刻.位置(两维)然后转 ...
- 征途堆积出友情的永恒「堆优化dp」
直接写题解: 很简单的dp暴力转移式子:f[i]=MAX{f[j]+max(tax[j],sum[i]-sum[j])} 观察式子,只有一个变量sum[i]; 而其他都为定量; 则考虑维护 两个定量: ...
- NOI.AC#2139-选择【斜率优化dp,树状数组】
正题 题目链接:http://noi.ac/problem/2139 题目大意 给出\(n\)个数字的序列\(a_i\).然后选出一个不降子序列最大化子序列的\(a_i\)和减去没有任何一个数被选中的 ...
- 洛谷P1725 琪露诺 (单调队列/堆优化DP)
显然的DP题..... 对于位置i,它由i-r~i-l的位置转移过来,容易得到方程 dp[i]=dp[i]+max(dp[i−r],...,dp[i−l]). 第一种:n2的暴力,只能拿部分分. 1 ...
- BZOJ 2809 [Apio2012]dispatching(斜堆+树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2809 [题目大意] 给出一棵树,求出每个点有个权值,和一个乘算值,请选取一棵子树, 并 ...
随机推荐
- Token验证的流程及如何准确的判断一个数据的类型
Token验证的流程: 1,客户端使用用户名跟密码请求登录:2,服务端收到请求,去验证用户名与密码:3,验证成功后,服务端会签发一个 Token,再把这个 Token 发送给客户端:4,客户端收到 T ...
- MyBatis 查询的时候属性名和字段名不一致的问题
目录 问题 解决方案:resultMap 问题 当我们数据库中的字段和实体类中的字段不一致的时候,查询会出问题 数据库字段是 pwd id name pwd 1 张三 123456 2 李四 1234 ...
- 【RAC】双节点RAC搭建
本文主要是双节点的RAC进行搭建,根据黄伟老师的视频进行总结和使用. 搭建环境: 1.两台安装好Linux_x64系统的服务器 2.IP设置 注意:Priv-IP的IP是自己一个网段,而剩下的SCAN ...
- P1967 货车运输(倍增LCA,生成树)
题目链接: https://www.luogu.org/problemnew/show/P1967 题目描述 A国有n座城市,编号从 1到n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制, ...
- 基于HBuilderX+UniApp+ColorUi+UniCloud 优宝库 开发实战(一)
1. 优宝库介绍 优宝库是基于阿里妈妈.淘宝联盟 淘宝商品Api,前端使用HBuilderX + UniApp + ColorUi,后端采用UniClound 精选淘宝商品进行推荐的App程序.下 ...
- 牛逼!MySQL 8.0 中的索引可以隐藏了…
MySQL 8.0 虽然发布很久了,但可能大家都停留在 5.7.x,甚至更老,其实 MySQL 8.0 新增了许多重磅新特性,比如栈长今天要介绍的 "隐藏索引" 或者 " ...
- ProBuilder快速原型开发技术 ---ProBuilder基础操作
在游戏开发.虚拟现实等三维仿真领域,Unity目前是国内外最为知名的开发引擎.随着版本的不断提升与完善,目前Unity2020等最新版本,又增加了很多令人惊奇的功能. Unity内置的ProBuild ...
- JVM(七)字符串详解
常量池: 我们前面也一直说常量池有三种: 1:class文件中的常量池,前面我们解析class文件的时候解析的就是,这是静态常量池.在硬盘上. 2:运行时常量池.可以通过HSDB查看,是Instan ...
- ldf和mdf文件怎么还原到sqlserver数据库
1.把mdf文件和ldf文件拷贝到数据库的默认路径C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA里:2.在sq ...
- 关闭(隐藏)VS2019控制台上文件路径的显示
昨天有个朋友问我,怎么关闭在运行程序后,控制台上显示的文件路径啊?啥??我突然不知道他说的说什么,然后我就自己随便打了几行运行了一下,才知道原来他说的是这个: 一开始我也没在意,我就告诉他,这个无所谓 ...