• 题意:有\(n\)个点,\(n-1\)条边,每条边正向和反向有两个权值,且每条边最多只能走两次,有\(m\)次询问,问你从\(u\)走到\(v\)的最大权值是多少.

  • 题解:可以先在纸上画一画,不难发现,除了从\(u\)走到\(v\)的路径上的反向权值我们取不到,其他所有边的正反权值均能取到,所以答案就是:\(sum-u->v路径的反向权值\),问题也就转换成了求\(v->u\)的权值,那么这里我们就可以用LCA来求了.

    首先,令一个点为根节点,然后求出\(v\)到根节点的距离和根节点到\(u\)的距离,再减去根节点到\(LCA(u,v)\)的正反权值,就是\(v->u\)的权值.

    这题会卡读入,记得用scanf.

  • 代码:

    struct misaka{
    int out;
    int val1,val2;
    }p; int t;
    int n,m;
    int sum;
    vector<misaka> V[N];
    int fa[N][30];
    int depth[N];
    int lg[N];
    int dis1[N],dis2[N];
    bool st[N]; void dfs(int node){ //求每个节点到根节点的距离.
    st[node]=true;
    for(auto w:V[node]){
    int now=w.out;
    int val1=w.val1;
    int val2=w.val2;
    if(st[now]) continue;
    dis1[now]=dis1[node]+val1;
    dis2[now]=dis2[node]+val2;
    dfs(now);
    }
    } void presol(int node,int fath){
    fa[node][0]=fath;
    depth[node]=depth[fath]+1;
    for(int i=1;i<=lg[depth[node]]-1;++i){
    fa[node][i]=fa[fa[node][i-1]][i-1];
    }
    for(auto w:V[node]){
    if(w.out!=node){
    presol(w.out,node);
    }
    }
    } int LCA(int x,int y){
    if(depth[x]<depth[y]){
    swap(x,y);
    }
    while(depth[x]>depth[y]){
    x=fa[x][lg[depth[x]-depth[y]]-1];
    }
    if(x==y) return x;
    for(int k=lg[depth[x]]=1;k>=0;--k){
    if(fa[x][k]!=fa[y][k]){
    x=fa[x][k];
    y=fa[y][k];
    }
    }
    return fa[x][0];
    } int main() {
    ios::sync_with_stdio(false);cin.tie(0);
    cin>>t;
    while(t--){
    cin>>n;
    sum=0;
    for(int i=1;i<=n-1;++i){
    int u,v,val1,val2;
    cin>>u>>v>>val1>>val2;
    p.out=v,p.val1=val1,p.val2=p.val2;
    V[u].pb(p);
    p.out=u,p.val1=val2,p.val2=p.val1;
    V[v].pb(p);
    } for(int i=1;i<=n;++i){
    lg[i]=lg[i-1]+(1<<lg[i-1]==i);
    } dfs(1);
    presol(1,0); cin>>m;
    for(int i=1;i<=m;++i){
    int u,v;
    cin>>u>>v;
    cout<<sum-(dis1[u]+dis2[v]-dis1[LCA(u,v)]-dis2[LCA(u,v)])<<endl;
    } } return 0;
    }

GYM101810 ACM International Collegiate Programming Contest, Amman Collegiate Programming Contest (2018) M. Greedy Pirate (LCA)的更多相关文章

  1. [ACM International Collegiate Programming Contest, Amman Collegiate Programming Contest (2018)]

    https://codeforces.com/gym/101810 A. Careful Thief time limit per test 2.5 s memory limit per test 2 ...

  2. ACM International Collegiate Programming Contest World Finals 2014

    ACM International Collegiate Programming Contest World Finals 2014 A - Baggage 题目描述:有\(2n\)个字符摆在编号为\ ...

  3. ACM International Collegiate Programming Contest World Finals 2013

    ACM International Collegiate Programming Contest World Finals 2013 A - Self-Assembly 题目描述:给出\(n\)个正方 ...

  4. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syria, Lattakia, Tishreen University, April, 30, 2018

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syr ...

  5. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. Poor Ramzi -dp+记忆化搜索

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. ...

  6. 18春季训练01-3/11 2015 ACM Amman Collegiate Programming Contest

    Solved A Gym 100712A Who Is The Winner Solved B Gym 100712B Rock-Paper-Scissors Solved C Gym 100712C ...

  7. Call for Papers IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM)

    IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM) 2014 In ...

  8. IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM) 2014 Industry Track Call for Papers

    IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM) 2014 In ...

  9. 2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest

    2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest A - Arranging Wine 题目描述:有\(R\)个红箱和\(W\)个白箱,将这 ...

随机推荐

  1. 分别使用 Python 和 Math.Net 调用优化算法

    1. Rosenbrock 函数 在数学最优化中,Rosenbrock 函数是一个用来测试最优化算法性能的非凸函数,由Howard Harry Rosenbrock 在 1960 年提出 .也称为 R ...

  2. 【Oracle】dump函数用法

    Oracle dump函数的用法 一.函数标准格式: DUMP(expr[,return_fmt[,start_position][,length]]) 基本参数时4个,最少可以填的参数是0个.当完全 ...

  3. leetcode 1240. 铺瓷砖(回溯,DFS)

    题目链接 https://leetcode-cn.com/problems/tiling-a-rectangle-with-the-fewest-squares/ 题意: 用尽可能少的正方形瓷砖来铺地 ...

  4. Sentry(v20.12.1) K8S 云原生架构探索,1分钟上手 JavaScript 性能监控

    系列 Sentry-Go SDK 中文实践指南 一起来刷 Sentry For Go 官方文档之 Enriching Events Snuba:Sentry 新的搜索基础设施(基于 ClickHous ...

  5. C#从入门到放弃治疗一:初探C#世界

    C#是一款高级的面向对象语言,运行于.NET framework之上的高级程序设计语言.其语言规范和,语法和java有着惊人的类似之处.所以如果你在学习C#之前有着java的基础,你将快速地入门.当然 ...

  6. uni-app开发经验分享八: 实现微信APP支付的全过程详解

    背景 最近项目使用uni-app实现微信支付,把过程简单记录下,帮助那些刚刚基础uni-app,苦于文档的同学们.整体来说实现过程和非uni-app的实现方式没有太大不同,难点就在于uni-app对于 ...

  7. centralized collectors 中心化 采集器

    Fluent Bit https://fluentbit.io/ FluentBit is an open source specialized data collector. It provides ...

  8. 《CSP.OI吟》

    吟 CSP·OI 这个LCT,我听得很懵逼 在 Splay 里面,好像有重链 不用线段树,Splay 来维护 树的形态有改变,不只是那一条边 所以要把整棵树,重新剖一遍 什么重链 ~ 什么轻边 ~ 什 ...

  9. 题解 P3833 【[SHOI2012]魔法树】

    题目 直通车 很显然这是个树刨的板子,树上链查询和子树查询 注意: 1.这个点的树根为 0 而不是 1 所以注意读图时点标号 +1 就解决了 2.注意数据范围\(2^{32}\) 然后板子就能过了 n ...

  10. 某商城系统(V1.3-2020-01-10)前台命令执行漏洞

    漏洞文件: ./inc/module/upload_img.php 先跟进 del_file 函数: 在 del_file 函数中首先执行了unlink操作,然后接着进行了file_exists 判断 ...