题目描述

在麦克雷的面前有N个数,以及一个R*C的矩阵。现在他的任务是从N个数中取出 R*C 个,并填入这个矩阵中。矩阵每一行的法值为本行最大值与最小值的差,而整个矩阵的法值为每一行的法值的最大值。现在,麦克雷想知道矩阵的最小法值是多少。

输入

输入共两行。

第一行是三个整数:n,r,c。(r, c <= 104, r * c <= n <= 106

第二行是 n 个整数 Pi。(0 < pi <= 109)

输出

输出一个整数,即满足条件的最小的法值。

样例输入

7 2 3
170 205 225 190 260 225 160

样例输出

30

可以说是最大值最小化的模板题了,但是比赛的时候没写对。
赛后想了想还是对这类题理解不深。
二分枚举答案,只要找出满足答案的一种情况就行,不需要硬找出最佳的满足情况。所以这题里面直接for循环就好,不需要搜出所有r个的c的情况。

附ac代码:
 1 #include <bits/stdc++.h>
2 using namespace std;
3 const int maxn = 1e6;
4 const int inf = 0x3f3f3f3f;
5 int nu[maxn];
6 int dis[maxn];
7 int n, r, c;
8 int fun(int minn)
9 {
10 int rr = 0;
11 int i = c;
12 while(i <= n)
13 {
14 if(dis[i] <= minn)
15 {
16 ++rr;
17 if(rr == r) return 1;
18 i += c;
19 }
20 else ++i;
21 }
22 return 0;
23 }
24 int main() {
25
26 scanf("%d %d %d", &n, &r, &c);
27 for(int i = 1; i <= n; ++i)
28 {
29 scanf("%d", &nu[i]);
30 }
31 sort(nu + 1, nu + 1 + n);
32 for(int i = c; i <= n; ++i)
33 {
34 dis[i] = nu[i] - nu[i - c + 1];
35 // printf("%d ", dis[i]);
36 }
37 int lt = 0, rt = inf;
38 while(lt <= rt)
39 {
40 int mid = lt + (rt - lt) / 2;
41 // printf("%d\n", mid);
42 if(fun(mid)) rt = mid - 1;
43 else lt = mid + 1;
44 }
45 printf("%d\n", lt);
46 return 0;
47 }

zzuli-2259 matrix的更多相关文章

  1. angular2系列教程(十一)路由嵌套、路由生命周期、matrix URL notation

    今天我们要讲的是ng2的路由的第二部分,包括路由嵌套.路由生命周期等知识点. 例子 例子仍然是上节课的例子:

  2. Pramp mock interview (4th practice): Matrix Spiral Print

    March 16, 2016 Problem statement:Given a 2D array (matrix) named M, print all items of M in a spiral ...

  3. Atitit Data Matrix dm码的原理与特点

    Atitit Data Matrix dm码的原理与特点 Datamatrix原名Datacode,由美国国际资料公司(International Data Matrix, 简称ID Matrix)于 ...

  4. Android笔记——Matrix

    转自:http://www.cnblogs.com/qiengo/archive/2012/06/30/2570874.html#translate Matrix的数学原理 在Android中,如果你 ...

  5. 通过Matrix进行二维图形仿射变换

    Affine Transformation是一种二维坐标到二维坐标之间的线性变换,保持二维图形的"平直性"和"平行性".仿射变换可以通过一系列的原子变换的复合来 ...

  6. [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素

    Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...

  7. [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  8. [LeetCode] Search a 2D Matrix II 搜索一个二维矩阵之二

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

  9. [LeetCode] Search a 2D Matrix 搜索一个二维矩阵

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

  10. [LeetCode] Set Matrix Zeroes 矩阵赋零

    Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. click ...

随机推荐

  1. JMS监听Oracle AQ

    该文档中,oracle版本为11g,jdk版本1.8,java项目为maven构建的springboot项目,springboot的版本为2.1.6,并使用了定时任务来做AQ监听的重连功能,解决由于外 ...

  2. pycharm工具的使用

    一.Pycharm常用快捷键 快捷键 作用 备注  ctrl + win + 空格  自动提示并导包  连按两次  ctrl + alt + 空格  自动提示并导包  连按两次  Alt + Ente ...

  3. kaggle新手如何在平台学习大神的代码

    原创:数据臭皮匠  [导读]Kaggle ,作为听说它很牛X但从未接触过的同学,可能仅仅了解这是一个参加数据挖掘比赛的网站,殊不知Kaggle也会有赛题相关的数据集, 比如我们熟知的房价预测.泰坦尼克 ...

  4. 最佳的思维导图生成工具——markmap 使用教程

    前言 相信很多程序员朋友都有在用 Markdown 吧,我是大三找实习工作的时候接触到的,简历就是用 Markdown 写的. Markdown 的好处是专注码字的同时还能兼顾排版,不用像 word ...

  5. jQuery 勾选显示

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. Zerotier在windows下实现内网远程桌面

    Zerotier实现内网远程桌面 使用背景 实验室设备条件过于恶劣 向日葵在有些场景下会莫名崩溃,或者画面不动. Teamviewer免费版在之前用的时候出现过疑似商业行为被断连,github上寻解决 ...

  7. Makefile 描述的是文件编译的相关规则,它的规则主要是两个部分组成,分别是依赖的关系和执行的命令 PHONY伪目标实践

    Makefile的工作流程 http://c.biancheng.net/view/7091.html Makefile文件是什么? 我们教程主要是讲的是 Makefile .很多 Linux(Uni ...

  8. RMI笔记

    这是<java核心技术> 第11章 分布式对象的笔记. RMI基本原理 我们使用远程方法调用是希望达到这样的目的: 可以像调用本地方法一样去调用一个远程方法. 实现远程调用的方式是 为客户 ...

  9. 序列化 serialize

    Serializable 序列化  The byte stream created is platform independent. So, the object serialized on one ...

  10. Linux数据库的导入导出

    Linux数据库的导入导出 1.导入数据库 mysql -u username -p test < /home/data/test.sql 说明:username是数据库用户名,test为目标数 ...