题目描述

在麦克雷的面前有N个数,以及一个R*C的矩阵。现在他的任务是从N个数中取出 R*C 个,并填入这个矩阵中。矩阵每一行的法值为本行最大值与最小值的差,而整个矩阵的法值为每一行的法值的最大值。现在,麦克雷想知道矩阵的最小法值是多少。

输入

输入共两行。

第一行是三个整数:n,r,c。(r, c <= 104, r * c <= n <= 106

第二行是 n 个整数 Pi。(0 < pi <= 109)

输出

输出一个整数,即满足条件的最小的法值。

样例输入

7 2 3
170 205 225 190 260 225 160

样例输出

30

可以说是最大值最小化的模板题了,但是比赛的时候没写对。
赛后想了想还是对这类题理解不深。
二分枚举答案,只要找出满足答案的一种情况就行,不需要硬找出最佳的满足情况。所以这题里面直接for循环就好,不需要搜出所有r个的c的情况。

附ac代码:
 1 #include <bits/stdc++.h>
2 using namespace std;
3 const int maxn = 1e6;
4 const int inf = 0x3f3f3f3f;
5 int nu[maxn];
6 int dis[maxn];
7 int n, r, c;
8 int fun(int minn)
9 {
10 int rr = 0;
11 int i = c;
12 while(i <= n)
13 {
14 if(dis[i] <= minn)
15 {
16 ++rr;
17 if(rr == r) return 1;
18 i += c;
19 }
20 else ++i;
21 }
22 return 0;
23 }
24 int main() {
25
26 scanf("%d %d %d", &n, &r, &c);
27 for(int i = 1; i <= n; ++i)
28 {
29 scanf("%d", &nu[i]);
30 }
31 sort(nu + 1, nu + 1 + n);
32 for(int i = c; i <= n; ++i)
33 {
34 dis[i] = nu[i] - nu[i - c + 1];
35 // printf("%d ", dis[i]);
36 }
37 int lt = 0, rt = inf;
38 while(lt <= rt)
39 {
40 int mid = lt + (rt - lt) / 2;
41 // printf("%d\n", mid);
42 if(fun(mid)) rt = mid - 1;
43 else lt = mid + 1;
44 }
45 printf("%d\n", lt);
46 return 0;
47 }

zzuli-2259 matrix的更多相关文章

  1. angular2系列教程(十一)路由嵌套、路由生命周期、matrix URL notation

    今天我们要讲的是ng2的路由的第二部分,包括路由嵌套.路由生命周期等知识点. 例子 例子仍然是上节课的例子:

  2. Pramp mock interview (4th practice): Matrix Spiral Print

    March 16, 2016 Problem statement:Given a 2D array (matrix) named M, print all items of M in a spiral ...

  3. Atitit Data Matrix dm码的原理与特点

    Atitit Data Matrix dm码的原理与特点 Datamatrix原名Datacode,由美国国际资料公司(International Data Matrix, 简称ID Matrix)于 ...

  4. Android笔记——Matrix

    转自:http://www.cnblogs.com/qiengo/archive/2012/06/30/2570874.html#translate Matrix的数学原理 在Android中,如果你 ...

  5. 通过Matrix进行二维图形仿射变换

    Affine Transformation是一种二维坐标到二维坐标之间的线性变换,保持二维图形的"平直性"和"平行性".仿射变换可以通过一系列的原子变换的复合来 ...

  6. [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素

    Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...

  7. [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  8. [LeetCode] Search a 2D Matrix II 搜索一个二维矩阵之二

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

  9. [LeetCode] Search a 2D Matrix 搜索一个二维矩阵

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

  10. [LeetCode] Set Matrix Zeroes 矩阵赋零

    Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. click ...

随机推荐

  1. wmic 操作文件的datafile

    wmic datafile /?动词有ASSOC,CALL,CREATE,DELETE,GET,LIST 这几个 命令:wmic datafile where "filename='dsc0 ...

  2. ClickHouse入门:表引擎-HDFS

    前言插件及服务器版本服务器:ubuntu 16.04Hadoop:2.6ClickHouse:20.9.3.45 文章目录 简介 引擎配置 HDFS表引擎的两种使用形式 引用 简介 ClickHous ...

  3. 15V转5V转3.3V转3V芯片,DC-DC和LDO

    15V电压是属于一般电压,降压转成5V电压,3.3V电压和3V电压,适用于这个电压的DC-DC很多,LDO也是有可以选择的.LDO芯片如PW6206,PW8600等.DC-DC芯片如:PW2162,P ...

  4. 特斯拉Toolbox诊断检测仪工具Tesla诊断电脑 Tesla Toolbox

    Tesla特斯拉Toolbox诊断工具Tesla诊断电脑检测仪 Tesla Toolbox, Tesla Toolbox Diagnostic Tester.Language: English,Deu ...

  5. jmeter-并发及常数吞吐量定时器设定

  6. .net core 不同地区时间相互转换

    .net core 不同地区时间相互转换 //韩国时间转换成当前时间 //value=需要转换的时间 //Korea Standard Tim 韩国时间 //China Standard Time 中 ...

  7. Update Node Using a Package Manager nodesource

    How to Update Node.js to Latest Version (Linux, Ubuntu, OSX, Others) - HostingAdvice.com https://www ...

  8. Redis集群拆分原则之AKF

    当我们搭建集群的时候,首先要想明白需要解决哪些问题,搞清楚这个之前,想想单节点.单实例.单机有哪些问题? 单点故障 容量有限 可支持的连接有限(性能不足) ...... 为了解决这些问题,我们需要对服 ...

  9. hbase 集群(完全分布式)方式安装

    一,环境 1,  主节点一台: ubuntu desktop 16.04 zhoujun      172.16.12.1 从节点(slave)两台:ubuntu server 16.04 hadoo ...

  10. mysql int类型 int(11) 和int(2)区别

    CREATE TABLE `learn` ( `id` int(11) unsigned NOT NULL, `exp` int(2) DEFAULT 0, PRIMARY KEY (`id`)) E ...