D. Inversion Counting
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

A permutation of size n is an array of size n such that each integer from 1 to n occurs exactly once in this array. An inversion in a permutation p is a pair of indices (i, j) such that i > j and ai < aj. For example, a permutation [4, 1, 3, 2] contains 4 inversions: (2, 1), (3, 1), (4, 1), (4, 3).

You are given a permutation a of size n and m queries to it. Each query is represented by two indices l and r denoting that you have to reverse the segment [l, r] of the permutation. For example, if a = [1, 2, 3, 4] and a query l = 2, r = 4 is applied, then the resulting permutation is [1, 4, 3, 2].

After each query you have to determine whether the number of inversions is odd or even.

Input

The first line contains one integer n (1 ≤ n ≤ 1500) — the size of the permutation.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) — the elements of the permutation. These integers are pairwise distinct.

The third line contains one integer m (1 ≤ m ≤ 2·105) — the number of queries to process.

Then m lines follow, i-th line containing two integers li, ri (1 ≤ li ≤ ri ≤ n) denoting that i-th query is to reverse a segment [li, ri] of the permutation. All queries are performed one after another.

Output

Print m lines. i-th of them must be equal to odd if the number of inversions in the permutation after i-th query is odd, and even otherwise.

Examples
Input
3
1 2 3
2
1 2
2 3
Output
odd
even
Input
4
1 2 4 3
4
1 1
1 4
1 4
2 3
Output
odd
odd
odd
even
Note

The first example:

  1. after the first query a = [2, 1, 3], inversion: (2, 1);
  2. after the second query a = [2, 3, 1], inversions: (3, 1), (3, 2).

The second example:

  1. a = [1, 2, 4, 3], inversion: (4, 3);
  2. a = [3, 4, 2, 1], inversions: (3, 1), (4, 1), (3, 2), (4, 2), (4, 3);
  3. a = [1, 2, 4, 3], inversion: (4, 3);
  4. a = [1, 4, 2, 3], inversions: (3, 2), (4, 2).

(这一题思路很巧妙

题意:给n个不相同的数,每次询问都会将l到r的数翻转,判断每次翻转后所有数的逆序数和的奇偶性。

解题思路:因为每段序列的逆序数和最大的情况是该序列从大到小排序,此时逆序数和为max=(r-l+1)*(r-l)/2 。那么设序列的逆序数和为m,则其翻转后为max-m。若max为偶数,则m与max-m的奇偶性一致,也就是说翻转无影响。而若max为奇数,则m与max-m的奇偶性不同,则翻转会改变答案。

也就是说,只需要先求出整个序列的逆序数和的奇偶性,再根据每次翻转,判断是否会改变答案的奇偶性就行了。

ac代码如下:

 1 #include <cstdio>
2 #include <cstring>
3 #include <iostream>
4 using namespace std;
5 const int maxn = 1500+10;
6 int nu[maxn];
7 int cnt=0;
8 int main()
9 {
10 int n;
11 scanf("%d",&n);
12 for(int i=1;i<=n;++i)
13 scanf("%d",&nu[i]);
14 for(int i=1;i<=n;++i)
15 {
16 for(int j=1;j<i;++j)
17 {
18 if(nu[j]>nu[i])
19 {
20 cnt++;
21 }
22 }
23 }
24 cnt%=2;
25 int m;
26 scanf("%d",&m);
27 int l,r;
28 for(int i=1;i<=m;++i)
29 {
30 scanf("%d%d",&l,&r);
31 if((r-l+1)*(r-l)/2%2==1) cnt^=1;
32 if(cnt) printf("odd\n");
33 else printf("even\n");
34 }
35 return 0;
36 }

codeforces 911D的更多相关文章

  1. Codeforces 911D. Inversion Counting (数学、思维)

    题目链接:Inversion Counting 题意: 定义数列{ai|i=1,2,...,n}的逆序对如下:对于所有的1≤j<i≤n,若ai<aj,则<i,j>为一个逆序对. ...

  2. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  3. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  4. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  5. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  6. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  7. CodeForces - 274B Zero Tree

    http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...

  8. CodeForces - 261B Maxim and Restaurant

    http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...

  9. CodeForces - 696B Puzzles

    http://codeforces.com/problemset/problem/696/B 题目大意: 这是一颗有n个点的树,你从根开始游走,每当你第一次到达一个点时,把这个点的权记为(你已经到过不 ...

随机推荐

  1. wmic 查看主板信息

    查看主板信息的一个命令:wmic baseboard get 当然在命令提示符里查看,真的很费劲,所以我们将命令格式化一下:wmic baseboard get /format:HFORM >c ...

  2. ElasticSearch Python 基本操作

    创建索引 from elasticsearch import Elasticsearch es = Elasticsearch('192.168.149.96:9200') mappings = { ...

  3. unity3D进阶

    前言 在之前的例子中,我们都没有用到unity的精髓,例如地形系统.物理系统.粒子系统等,本文记录unity3D的进阶简单应用 前期准备 https://unity.cn/releases/full/ ...

  4. 离线安装docker-ce

    1.用一台可以连外网的虚拟机把docker-ce安装包下载下来,vim /tmp/docker-download.sh #!/bin/bash set -e mkdir -p /apps/docker ...

  5. linux--关于JVM CPU资源占用过高的问题排查

    一.背景: 先执行一个java程序里面开了两个线程分别都在while循环做打印操作. # java -cp ./test-threads.jar com.spiro.Main 二.现象: 通过top命 ...

  6. day03 函数基本语法及特性 2. 参数与局部变量 3. 返回值 嵌套函数 4.递归 5.匿名函数 6.函数式编程介绍 7.高阶函数 8.内置函数

    本节内容 1. 函数基本语法及特性 2. 参数与局部变量 3. 返回值 嵌套函数 4.递归 5.匿名函数 6.函数式编程介绍 7.高阶函数 8.内置函数 温故知新 1. 集合 主要作用: 去重 关系测 ...

  7. 基于nginx的频率控制方案思考和实践

    基于nginx的频率控制方案思考 标签: 频率控制 nginx 背景 nginx其实有自带的limit_req和limit_conn模块,不过它们需要在配置文件中进行配置才能发挥作用,每次有频控策略的 ...

  8. setTimeout、Promise、Async/Await 的区别

    事件循环中分为宏任务队列和微任务队列其中setTimeout的回调函数放到宏任务队列里,等到执行栈清空以后执行promise.then里的回调函数会放到相应宏任务的微任务队列里,等宏任务里面的同步代码 ...

  9. 聊一聊Axios与登录机制

    前言 因为HTTP是一个stateless的协议,服务器并不会保存任何关于状态数据. 所以需要登录功能让服务器在以后请求的过程中能够识别到你的身份,而不是每次发请求都要输入用户名和密码. 下面介绍一下 ...

  10. .NET使用MailKit进行邮件处理

    0.介绍 MimeKit and MailKit are popular fully-featured email frameworks for .NET 框架支持版本如下 Supports .NET ...