HDU 6623 Minimal Power of Prime(思维)题解
题意:
已知任意大于\(1\)的整数\(a = p_1^{q_1}p_2^{q_2} \cdots p_k^{q_k}\),现给出\(a \in [2,1e18]\),求\(min\{q_i\},q \in [1, k]\)。即求质因数分解后,最小指数是多少。
思路:
因为\(a \in [2,1e18]\),所以我们现打一个\(1e4\)以内的质数表,然后直接求出\(1e4\)以内的情况。
上面弄完了,那么现在最多只有\(4\)个质因子,情况如下:
\(n = p^4\),这种情况就是\(4\)次
\(n = p^3\),这种情况是3次,\(n = p_1^3p_2\)就直接和最后一种答案一样
\(n = p^2\),\(p = p_1 * p_1\)就是第一种情况
\(n = p\)
代码:
#include<map>
#include<set>
#include<cmath>
#include<cstdio>
#include<stack>
#include<ctime>
#include<vector>
#include<queue>
#include<cstring>
#include<string>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
using namespace std;
const int maxn = 10000 + 5;
const int INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
using namespace std;
int prime[maxn], p[maxn], cnt;
void init(){
memset(p, 0, sizeof(p));
cnt = 0;
for(int i = 2; i < maxn; i++){
if(!p[i]){
prime[cnt++] = i;
}
for(int j = 0; j < cnt && i * prime[j] < maxn; j++){
p[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
}
}
}
bool triple(ll n){
ll l = 1e4, r = 1e6;
while(l <= r){
ll m = (l + r) >> 1;
ll ret = m * m * m;
if(ret == n) return true;
if(ret > n) r = m - 1;
else l = m + 1;
}
return false;
}
int main(){
int T;
init();
scanf("%d", &T);
while(T--){
ll n;
scanf("%lld", &n);
int ans = 1000;
for(int i = 0; i < cnt && prime[i] <= n; i++){
if(n % prime[i] == 0){
int num = 0;
while(n % prime[i] == 0){
num++;
n /= prime[i];
}
ans = min(ans, num);
}
}
if(n > 1 && ans > 1){
ll t1 = ll(sqrt(n));
ll t2 = ll(sqrt(t1));
if(t2 * t2 * t2 * t2 == n) ans = min(ans, 4);
else if(t1 * t1 == n) ans = min(ans, 2);
else if(triple(n)) ans = min(ans, 3);
else ans = 1;
}
printf("%d\n", ans);
}
return 0;
}
HDU 6623 Minimal Power of Prime(思维)题解的更多相关文章
- HDU 6623 Minimal Power of Prime
Time limit 1000 ms Memory limit 65536 kB OS Windows 中文题意 给一个数n,设将n质因数分解后可以得到 \[n=\prod_{i=1}^{\omega ...
- HDU 6623"Minimal Power of Prime"(数学)
传送门 •题意 给你一个大于 1 的正整数 n: 它可以分解成不同的质因子的幂的乘积的形式,问这些质因子的幂中,最小的幂是多少. •题解 定义 $ans$ 表示最终答案: ①如果 $ans \ge 5 ...
- HDU 6623 Minimal Power of Prime(数学)
传送门 •题意 给你一个大于 1 的正整数 n: 它可以分解成不同的质因子的幂的乘积的形式,问这些质因子的幂中,最小的幂是多少. •题解 把[1,10000]内的素数筛出来,然后对于每个素$P$数遍历 ...
- 2019杭电多校第四场hdu6623 Minimal Power of Prime
Minimal Power of Prime 题目传送门 解题思路 先打\(N^\frac{1}{5}\)内的素数表,对于每一个n,先分解\(N^\frac{1}{5}\)范围内的素数,分解完后n变为 ...
- 2019HDU多校Minimal Power of Prime——分段讨论&&思维
题目 将 $n$($1 < n \leq 10^{18}$)质因数分解,求质因数幂的最小值. 分析 直接质因数分解,不太行. 可以这样想,对小区间质因数分解,n变小了,再枚举答案. 打印1-10 ...
- 2019 Multi-University Training Contest 4 - 1010 - Minimal Power of Prime
http://acm.hdu.edu.cn/showproblem.php?pid=6623 题意,给50000个1e18级别的数N,求它质因数分解里面的最小的指数(不算0) 比赛的时候给划了一个1e ...
- [2019杭电多校第四场][hdu6623]Minimal Power of Prime
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6623 题目大意为求一个数的唯一分解的最小幂次.即120=23*31*51则答案为1. 因为数字太大不能 ...
- 2019hdu多校 Minimal Power of Prime
题目链接:Click here 题目大意:求一个数分解质因数后的最小幂指数 Solution: 首先,我们肯定是不能直接暴力求解的 我们先考虑筛出1e4范围以内的所有质数,把x所有这个范围内的质因子筛 ...
- HDU6623 Minimal Power of Prime (简单数论)
题面 T ≤ 50 000 T\leq50\,000 T≤50000 组数据: 输入一个数 N N N ( 2 ≤ N ≤ 1 0 18 2\leq N\leq 10^{18} 2≤N≤1018) ...
随机推荐
- ReactRouter的实现
ReactRouter的实现 ReactRouter是React的核心组件,主要是作为React的路由管理器,保持UI与URL同步,其拥有简单的API与强大的功能例如代码缓冲加载.动态路由匹配.以及建 ...
- 提取一个int类型数最右侧的1
提取一个int类型数最右侧的1 算法描述 把一个int类型的数,提取出最右侧的1来,例如: 6 对应的二进制位 0000 0110,那么取出来的应该是0000 0010 算法思路 对原数0000 01 ...
- jdk安装简洁版
一.jdk是what? jdk其实是个软件语言开发包,包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具. 没有JDK的话,无法编译Java程序(指java源码.java文件),如果想 ...
- 在这个应用中,我使用了 MQ 来处理异步流程、Redis 缓存热点数据、MySQL 持久化数据,还有就是在系统中调用另外一个业务系统的接口,对我的应用来说这些都是属于 RPC 调用,而 MQ、MySQL 持久化的数据也会存在于一个分布式文件系统中,他们之间的调用也是需要用 RPC 来完成数据交互的。
在这个应用中,我使用了 MQ 来处理异步流程.Redis 缓存热点数据.MySQL 持久化数据,还有就是在系统中调用另外一个业务系统的接口,对我的应用来说这些都是属于 RPC 调用,而 MQ.MySQ ...
- 用好Java中的枚举真的没有那么简单
1.概览 在本文中,我们将看到什么是 Java 枚举,它们解决了哪些问题以及如何在实践中使用 Java 枚举实现一些设计模式. enum关键字在 java5 中引入,表示一种特殊类型的类,其总是继承j ...
- odoo-nginx 配置
p.p1 { margin: 0; font: 12px "Andale Mono"; color: rgba(40, 254, 20, 1); background-color: ...
- 扒一扒ELF文件
ELF文件(Executable Linkable Format)是一种文件存储格式.Linux下的目标文件和可执行文件都按照该格式进行存储,有必要做个总结. 目录 1. 链接举例 2. ELF文件类 ...
- spark整合Phoenix相关案例
spark 读取Phoenix hbase table表到 DataFrame的方式 Demo1: 方式一:spark read读取各数据库的通用方式 方式二:spark.load 方式三:phoen ...
- java架构《并发编程框架篇 __Disruptor》
Disruptor入门 获得Disruptor 可以通过Maven或者下载jar来安装Disruptor.只要把对应的jar放在Java classpath就可以了. 基本的事件生产和消费 我们从 ...
- Codeforces Round #627 (Div. 3) C - Frog Jumps(逻辑)
题意: 有一个每个单元标明移动方向的长为n的序列,每次移动不能超过距离k,问能够从0移动到n+1的k的最小值. 思路: k=最长连续L序列长度+1. #include <bits/stdc++. ...