本题idea版权来自CSDN博客Steve_Junior的医院设置2

并没有什么用的链接

题目背景

\(A\)国的国情十分独特。它总共有\(n\)个城市,由\(n-1\)条道路连接。国内的城市当然是连通的。

时隔多年,全国会议再次召开。全国人民欢欣雀跃,期待会议后国家发展揭开新篇章。然而,会议筹备组此时却在为会议选址问题头痛不已。

题目描述

为了响应“保护环境”的国策,中央决定不再将首都作为固定会址,而是先计算出全国每个城市参会代表人数\(p_i\),若将城市u作为会址,定义城市v的出行开销为\(C_{v}=p_{v}*dis_{u,v}\)。会议筹备组的任务是选定一个城市\(u\),使出行总开销\(\sum_{i=1}^{n}C_{i}\)最小。

输入格式

第一行一个数字\(n\),表示城市总数。

第二行\(n\)个数字,表示每个城市参会代表人数。

第三行至第\(n+2\)行,每行三个数字\(u,v,w\),表示一条权值为\(w\)的连接城市\(u\)与城市\(v\)的道路。

输出格式

一个数字,表示最小出行总开销。

数据范围

对于30%的数据,\(n\leq 200\)。

对于50%的数据,\(n\leq 1500\)。

对于100%的数据,\(n\leq 5\times 10^{5},1\leq w\leq 10^{4}\)。

题解

30分做法

floyd暴力求出任意点对之间的距离,枚举每个城市作为会址,计算出总开销之后取最小值。大概5分钟就可以写完。复杂度为\(O(n^3)\)。这也是对拍时std采用的做法。

50分做法

将暴力求任意点对之间距离的算法改为\(n\)次堆优化dijkstra算法就可以通过。或者也可以采用一遍DFS后暴力查询\(O(n^2)\)次LCA的做法。其实是为了强行凑部分分才这样设计的

100分做法

这个做法十分玄妙其实只是自己一开始nc了而已……。

下面到了精彩的猜结论时间

理性分析画图发现会址其实就是树的带权重心,与边权无关。


贴一个来自学弟的证明:

考虑这棵树中的某一条边\((u,v)\),判断\(u\)和\(v\)哪个作为会址更优。可以看成城市\(u\)一侧的代表已经全部转移至城市\(u\),城市\(v\)也是如此。此时不难发现,将会址设在两个城市中此时所处代表更多的那个城市,总开销是最小的。因此,每次会址向更优的方向调整时就会不断向树的带权重心靠近,最后带权重心就是会址。


带权重心的求法其实和不带权的没有什么区别。将节点数改成代表数就可以了。

找到带权重心之后,接下来的任务变成了快速求出总开销。这个可以用简单的树形DP实现。

以重心为全树的根节点,设计状态\(f_i\)为将以\(i\)为根节点的子树中所有节点转移至节点\(i\)的总开销,最后\(f_{root}\)就是答案。转移时,记\(v\rightarrow u\)为v是u的子节点,则\(f_{u}=\sum\limits_{v\rightarrow u}(f_{v}+size_{v}\cdot w_{u,v})\)。可以看作将已经转移至\(v\)的所有代表经过边\((u,v)\)转移至\(u\)。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10,maxm=2e5+10,inf=0x7fffffff;
int heade[maxn],dw[maxn],ev[maxm],ew[maxm],nexte[maxm];
int size[maxn],f[maxn],cost[maxn];
int n,tot=0,root,sum=0;
void add_edge(int u,int v,int w){ev[++tot]=v;ew[tot]=w;nexte[tot]=heade[u];heade[u]=tot;}
void getroot(int ui,int fa)
{
int i,vi;
size[ui]=dw[ui];f[ui]=0;
for(i=heade[ui];~i;i=nexte[i])
{
vi=ev[i];if(vi==fa){continue;}
getroot(vi,ui);size[ui]+=size[vi];
f[ui]=max(f[ui],size[vi]);
}
f[ui]=max(f[ui],sum-size[ui]);
if(f[ui]<f[root]){root=ui;}
}
void dfs(int ui,int fa)
{
int i,vi,wi;
size[ui]=dw[ui];cost[ui]=0;
for(i=heade[ui];~i;i=nexte[i])
{
vi=ev[i];wi=ew[i];if(vi==fa){continue;}
dfs(vi,ui);
size[ui]+=size[vi];
cost[ui]+=cost[vi]+size[vi]*wi;
}
}
int main()
{
int i,j,u,v,w;
//freopen("data.in","r",stdin);
//freopen("test.out","w",stdout);
cin>>n;
memset(heade,-1,sizeof(heade));
for(i=1;i<=n;i++){scanf("%d",&dw[i]);sum+=dw[i];}
for(i=1;i<n;i++){scanf("%d%d%d",&u,&v,&w);add_edge(u,v,w);add_edge(v,u,w);}
root=0;f[0]=inf;getroot(1,0);
dfs(root,0);
cout<<cost[root];
return 0;
}

Luogu T16048 会议选址的更多相关文章

  1. [Luogu 1395] 会议

    题目 Description 有一个村庄居住着n个村民,有n-1条路径使得这n个村民的家联通,每条路径的长度都为1.现在村长希望在某个村民家中召开一场会议,村长希望所有村民到会议地点的距离之和最小,那 ...

  2. luogu P1395 会议

    题目描述 有一个村庄居住着n个村民,有n-1条路径使得这n个村民的家联通,每条路径的长度都为1.现在村长希望在某个村民家中召开一场会议,村长希望所有村民到会议地点的距离之和最小,那么村长应该要把会议地 ...

  3. luogu P1359会议

    //以一号节点为根节点,求出所有节点到根结点的距离,以及所有点的子节点的个数 //然后计算根据已知信息计算所有节点到当前结点的距离 //然后扫描n个点,O(n)求解 #include<bits/ ...

  4. 【题解】Luogu P2605 [ZJOI2010]基站选址

    原题传送门:P2604 [ZJOI2010]基站选址 看一眼题目,变知道这题一定是dp 设f[i][j]表示在第i个村庄修建第j个基站且不考虑i+1~n个村庄的最小费用 可以得出f[i][j] = M ...

  5. [Luogu] 无线网络发射器选址

    https://www.luogu.org/problemnew/show/P2038 二维前缀和 #include <iostream> #include <cstdio> ...

  6. luogu P2605 [ZJOI2010]基站选址

    luogu 先考虑朴素dp,设\(f_{i,j}\)表示在第\(i\)个村庄放了基站,一共放了\(j\)次,且只考虑前面村庄影响的答案.这里可以把\(j\)放在外面枚举,然后从\(f_{k,j-1}( ...

  7. luogu P2605 [ZJOI2010]基站选址 线段树优化dp

    LINK:基站选址 md气死我了l达成1结果一直调 显然一个点只建立一个基站 然后可以从左到右进行dp. \(f_{i,j}\)表示强制在i处建立第j个基站的最小值. 暴力枚举转移 复杂度\(n\cd ...

  8. [Luogu P3626] [APIO2009] 会议中心

    题面 传送门:https://www.luogu.org/problemnew/show/P3626 Solution 如果题目只要求求出第一问,那这题显然就是大水题. 但是加上第二问的话...... ...

  9. luogu P4360 [CEOI2004]锯木厂选址

    斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...

随机推荐

  1. fatal error C1045: 编译器限制 : 链接规范嵌套太深

    前言 我相信你是遇到了同样的问题.通过搜索引擎来到这里的.为了不耽误排查问题的时间,我提前说明一下这篇文章所描述的问题范畴: 我遇到的问题和 c++ 模板相关: 如果我减少传递的参数的话,是有可能避免 ...

  2. JAVA_基础反射创建运行时类的对象

    通过反射去创建对应的运行时类的对象 newInstance():调用此方法,创建对应的运行时类的对象.内部调用的是空参的构造器. 要想此方法正常的创建运行时类的对象,要求: 1.运行时类必须提供空参构 ...

  3. SQL注入之堆叠注入(堆查询注入)

    Stached injection -- 堆叠注入 0x00 堆叠注入的定义 ​ Stacked injection 汉语翻译过来后,称 为堆查询注入,也有称之为堆叠注入.堆叠注入为攻击者提供了很多的 ...

  4. Ocelot一个优秀的.NET API网关框架

    1 什么是Ocelot? Ocelot是一个用.NET Core实现并且开源的API网关,它功能强大,包括了:路由.请求聚合.服务发现.认证.鉴权.限流熔断.并内置了负载均衡器与Service Fab ...

  5. [工作札记]02: .Net Winform控件TreeView最简递归绑定方法

    前言:Treeview控件是我们在WinForm.WebForm开发中经常使用的控件,需要从数据库动态加载数据,然后递归绑定每一个节点:同样,递归的思路在其他程序中也经常运用,包括.Net MVC等. ...

  6. 十七:SQL注入之二次加解密,DNS注入

    加解密,二次,DNSlog注入 注入原理,演示案例,实际应用. less-21关,base64进行解密 encode加密decode解密 cookie处注入 判断加密算法,然后进行注入 less-24 ...

  7. 关联实现下-jsonpath取值(有难度!!耗时长)

    re的使用参考:正则表达式基础及re模块:https://www.cnblogs.com/dream66/p/12953729.html import restr1 = '{"access_ ...

  8. 理解C#中的 async await

    前言 一个老掉牙的话题,园子里的相关优秀文章已经有很多了,我写这篇文章完全是想以自己的思维方式来谈一谈自己的理解.(PS:文中涉及到了大量反编译源码,需要静下心来细细品味) 从简单开始 为了更容易理解 ...

  9. MySQL全面瓦解19:游标相关

    定义 我们经常会遇到这样的一种情况,需要对我们查询的结果进行遍历操作,并对遍历到的每一条数据进行处理,这时候就会使用到游标. 所以:游标(Cursor)是处理数据的一种存储在MySQL服务器上的数据库 ...

  10. Sklearn 与 TensorFlow 机器学习实战—一个完整的机器学习项目

    本章中,你会假装作为被一家地产公司刚刚雇佣的数据科学家,完整地学习一个案例项目.下面是主要步骤: 项目概述. 获取数据. 发现并可视化数据,发现规律. 为机器学习算法准备数据. 选择模型,进行训练. ...