思路:

我们需要枚举展开多少条边 然后把上底面的点放到和下底面一个平面 然后算两点之间的距离 注意判断直线与线段是否有交点

#include <bits/stdc++.h>

using namespace std;
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos(-1.0);
const int N = 1e5+7;
//Compares a double to zero
int sgn(double x){
if(fabs(x) < eps)return 0;
if(x < 0)return-1;
else return 1;
}
//square of a double
inline double sqr(double x){return x*x;} struct Point{
double x,y;
Point(){}
Point(double _x,double _y){
x = _x;
y = _y;
}
void input(){
scanf("%lf%lf",&x,&y);
}
void output(){
printf("%.2f-%.2f\n",x,y);
}
bool operator == (Point b)const{
return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
}
bool operator < (Point b)const{
return sgn(x-b.x)== 0-sgn(y-b.y)?0:x<b.x;
}
Point operator-(const Point &b)const{
return Point(x-b.x,y-b.y);
}
//叉积
double operator ^(const Point &b)const{
return x*b.y-y*b.x;
}
//点积
double operator *(const Point &b)const{
return x*b.x + y*b.y;
}
//返回长度
double len(){
return hypot(x,y);//库函数
}
//返回长度的平方
double len2(){
return x*x + y*y;
}
//返回两点的距离
double distance(Point p){
return hypot(x-p.x,y-p.y);
}
Point operator +(const Point &b)const{
return Point(x+b.x,y+b.y);
}
Point operator *(const double &k)const{
return Point(x*k,y*k);
}
Point operator /(const double &k)const{
return Point(x/k,y/k);
}
//计算 pa 和 pb 的夹角
//就是求这个点看 a,b 所成的夹角
//测试 LightOJ1203
double rad(Point a,Point b){
Point p = *this;
return fabs(atan2( fabs((a-p)^(b-p)),(a-p)*(b-p) ));
}
//化为长度为 r 的向量
Point trunc(double r){
double l = len();
if(!sgn(l))return *this;
r /= l;
return Point(x*r,y*r);
}
//逆时针旋转 90 度
Point rotleft(){
return Point(-y,x);
}
//顺时针旋转 90 度
Point rotright(){
return Point(y,-x);
}
//绕着 p 点逆时针旋转 angle
Point rotate(Point p,double angle){
Point v = (*this)-p;
double c = cos(angle), s = sin(angle);
return Point(p.x + v.x*c-v.y*s,p.y + v.x*s + v.y*c);
}
}p[N];
struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s = _s;
e = _e;
}
bool operator ==(Line v){
return (s == v.s)&&(e == v.e);
}
//根据一个点和倾斜角 angle 确定直线,0<=angle<pi
Line(Point p,double angle){
s = p;
if(sgn(angle-pi/2) == 0){
e = (s + Point(0,1));
}
else{
e = (s + Point(1,tan(angle)));
}
}
//ax+by+c=0
Line(double a,double b,double c){
if(sgn(a) == 0){
s = Point(0,-c/b);
e = Point(1,-c/b);
}
else if(sgn(b) == 0){
s = Point(-c/a,0);
e = Point(-c/a,1);
}
else{
s = Point(0,-c/b);
e = Point(1,(-c-a)/b);
}
}
void input(){
s.input();
e.input();
}
void adjust(){
if(e < s){
swap(s,e);
}
}
//求线段长度
double length(){
return s.distance(e);
}
//返回直线倾斜角 0<=angle<pi
double angle(){
double k = atan2(e.y-s.y,e.x-s.x);
if(sgn(k) < 0)k += pi;
if(sgn(k-pi) == 0)k-= pi;
return k;
}
//点和直线关系
//1 在左侧
//2 在右侧
//3 在直线上
int relation(Point p){
int c = sgn((p-s)^(e-s));
if(c < 0)return 1;
else if(c > 0)return 2;
else return 3;
}
// 点在线段上的判断
bool pointonseg(Point p){
return sgn((p-s)^(e-s)) == 0 && sgn((p-s)*(p-e)) <= 0;
}
//两向量平行 (对应直线平行或重合)
bool parallel(Line v){
return sgn((e-s)^(v.e-v.s)) == 0;
}
//两线段相交判断
//2 规范相交
//1 非规范相交
//0 不相交
int segcrossseg(Line v){
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
int d3 = sgn((v.e-v.s)^(s-v.s));
int d4 = sgn((v.e-v.s)^(e-v.s));
if( (d1^d2)==-2 && (d3^d4)==-2 )return 2;
return (d1==0 && sgn((v.s-s)*(v.s-e))<=0) ||
(d2==0 && sgn((v.e-s)*(v.e-e))<=0) ||
(d3==0 && sgn((s-v.s)*(s-v.e))<=0) ||
(d4==0 && sgn((e-v.s)*(e-v.e))<=0);
}
//直线和线段相交判断
//-*this line -v seg
//2 规范相交
//1 非规范相交
//0 不相交
int linecrossseg(Line v){
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
if((d1^d2)==-2) return 2;
return (d1==0||d2==0);
}
//两直线关系
//0 平行
//1 重合
//2 相交
int linecrossline(Line v){
if((*this).parallel(v))
return v.relation(s)==3;
return 2;
}
//求两直线的交点
//要保证两直线不平行或重合
Point crosspoint(Line v){
double a1 = (v.e-v.s)^(s-v.s);
double a2 = (v.e-v.s)^(e-v.s);
return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1
));
}
//点到直线的距离
double dispointtoline(Point p){
return fabs((p-s)^(e-s))/length();
}
//点到线段的距离
double dispointtoseg(Point p){
if(sgn((p-s)*(e-s))<0 || sgn((p-e)*(s-e))<0)
return min(p.distance(s),p.distance(e));
return dispointtoline(p);
}
//返回线段到线段的距离
//前提是两线段不相交,相交距离就是 0 了
double dissegtoseg(Line v){
return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v
.dispointtoseg(s),v.dispointtoseg(e)));
}
//返回点 p 在直线上的投影
Point lineprog(Point p){
return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) );
}
//返回点 p 关于直线的对称点
Point symmetrypoint(Point p){
Point q = lineprog(p);
return Point(2*q.x-p.x,2*q.y-p.y);
}
};
double sum[N],ans=1e18;
int s,t;
void work(Point x,Line tmp,int i){
Line res=Line(x,p[t]);
//printf("%lf\n",res.length());
if(res.linecrossseg(tmp)!=0){
ans=min(ans,res.length());
}
}
int main(){
int n,h;
scanf("%d%d",&n,&h);
for(int i=0;i<n;i++){
p[i].input();
}
scanf("%d%d",&s,&t);
--s; --t;
for(int i=1;i<n;i++){
sum[i]=sum[i-1]+p[i-1].distance(p[i]);
}
double tot=sum[n]=sum[n-1]+p[n-1].distance(p[0]);
for(int i=0;i<n;i++){
Point x=p[i],y=p[(i+1)%n];
Point z=(x-y).rotleft();
z=z*(h*1.0/z.len()); Point t=y+z; Line tmp=Line(t,t+z.rotleft());
//printf("%lf\n",tot);
double len;
if(s>=i+1){
len=sum[s]-sum[i+1];
}else{
len=tot-sum[i+1]+sum[s];
}
Point l,r;
l=t+(tmp.e-tmp.s)/tmp.length()*len;
r=t+(tmp.e-tmp.s)/tmp.length()*(len-tot);
// cout<<i<<" "<<r.x<<" "<<r.y<<endl;
work(l,Line(x,y),i);
work(r,Line(x,y),i);
}
printf("%.6lf\n",ans);
}

牛客挑战赛33 C 艾伦的立体机动装置(几何)的更多相关文章

  1. 牛客挑战赛33 B-鸽天的放鸽序列

    也许更好的阅读体验 \(\mathcal{Description}\) 定义一个长为\(n\)的\(01\)序列\(A_1, A_2, \dots, A_n\)​的权值为\(\sum_{i=1}^n ...

  2. 牛客挑战赛33 F 淳平的形态形成场(无向图计数,EGF,多项式求逆)

    传送门: 淳平的形态形成场 题解: 把a排序后,直接统计答案恰好为a[i]并不好做,可以统计答案>a[i]的方案数,设为\(f[i]\). 即不存在一个联通块,所有的权值都<=a[i]. ...

  3. 牛客练习赛33 E tokitsukaze and Similar String (字符串哈希hash)

    链接:https://ac.nowcoder.com/acm/contest/308/E 来源:牛客网 tokitsukaze and Similar String 时间限制:C/C++ 2秒,其他语 ...

  4. 牛客练习赛33 D tokitsukaze and Inverse Number (树状数组求逆序对,结论)

    链接:https://ac.nowcoder.com/acm/contest/308/D 来源:牛客网 tokitsukaze and Inverse Number 时间限制:C/C++ 1秒,其他语 ...

  5. 牛客练习赛33 C tokitsukaze and Number Game (结论+字符串处理)

    链接:https://ac.nowcoder.com/acm/contest/308/C 来源:牛客网 tokitsukaze and Number Game 时间限制:C/C++ 1秒,其他语言2秒 ...

  6. 牛客练习赛33 B tokitsukaze and RPG (类埃筛)

    链接:https://ac.nowcoder.com/acm/contest/308/B 来源:牛客网 tokitsukaze and RPG 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/ ...

  7. 牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp

    LINK:牛牛与序列 (牛客div1的E题怎么这么水... 还没D难. 定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_ ...

  8. 牛客挑战赛 30 A 小G数数

    题目链接:https://ac.nowcoder.com/acm/contest/375/A 分析:我写的时候竟然把它当成了DP....... 还建了个结构体DP数组,保存一二位,不知道当时脑子在抽啥 ...

  9. 良心送分题(牛客挑战赛35E+虚树+最短路)

    目录 题目链接 题意 思路 代码 题目链接 传送门 题意 给你一棵树,然后把这棵树复制\(k\)次,然后再添加\(m\)条边,然后给你起点和终点,问你起点到终点的最短路. 思路 由于将树复制\(k\) ...

随机推荐

  1. LeetCode220 存在重复元素 III

    给定一个整数数组,判断数组中是否有两个不同的索引 i 和 j,使得 nums [i] 和 nums [j] 的差的绝对值最大为 t,并且 i 和 j 之间的差的绝对值最大为 ķ. 示例 1: 输入: ...

  2. mysql中的基本注入函数

    1. 常见数据库注入函数: MYSQL: and length((user))>10 ACCESS: and (select count() from MSysAccessObject)> ...

  3. os.system('cmd')在linux和windows系统下返回值的差异

    今天,用os.system('cmd')分别在windows和linux平台上执行同一ping命令,命令执行失败时返回码不同,windows为1,而linux下返回为256,如下: linux下: & ...

  4. oracle rac与单实例DG切换

    1.主库查看状态(RAC库) SQL> select database_role,switchover_status from v$database; DATABASE_ROLE SWITCHO ...

  5. WCNSS_qcom_cfg.ini WIFI配置文件参数详细解析

    STA相关的一般配置 参数 含义 最小值 最大值 默认值 gNeighborLookupThreshold 1 触发roam scan发生的条件在WCNSS_qcom_cfg.ini文件中gNeigh ...

  6. zabbix-server安装部署配置

    zabbix-server安装部署配置 zabbixLinux安装部署安装脚本 1 一步一步部署 1.1 安装zabbix仓库源 这里安装阿里的zabbix仓库地址 选用zabbix版本3.4 rpm ...

  7. JavaScript中创建数组的方式!

    JavaScript中创建数组的方式! 利用数组字面量 // 1 直接量 console.log(Array.prototype); var arr = [1, 2, 4, 87432]; // 注意 ...

  8. Linux的.a、.so和.o文件 windows下obj,lib,dll,exe的关系 动态库内存管理 动态链接库搜索顺序 符号解析和绑定 strlen函数的汇编实现分析

    Linux的.a..so和.o文件 - chlele0105的专栏 - CSDN博客 https://blog.csdn.net/chlele0105/article/details/23691147 ...

  9. LIS的优化

    二分优化 在求一个最长不上升自序列中,显然其结尾元素越小,越有利于接其他元素,对答案的贡献也就可能会更高 那么我们可以用low[i]去存长度为i的LIS结尾元素的最小值 因此我们只要维护low数组 对 ...

  10. LOJ10132

    在 Adera 的异时空中有一张地图.这张地图上有 N 个点,有 N-1 条双向边把它们连通起来.起初地图上没有任何异象石,在接下来的 M 个时刻中,每个时刻会发生以下三种类型的事件之一: 地图的某个 ...