Sharding-JDBC分片策略详解(二)
一、分片策略
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/sharding/
Sharding-JDBC 中的分片策略有两个维度:分库(数据源分片)策略和分表策略。分库策略表示数据路由到的物理目标数据源,分表分片策略表示数据被路由到的目标表。分表策略是依赖于分库策略的,也就是说要先分库再分表,当然也可以不分库只分表。跟 Mycat 不一样,Sharding-JDBC 没有提供内置的分片算法,而是通过抽象成接口,让开发者自行实现,这样可以根据业务实际情况灵活地实现分片。
1.1、分片策略
包含分片键和分片算法,分片算法是需要自定义的。可以用于分库,也可以用于分表。由于分片算法和业务实现紧密相关,因此Sharding-JDBC并未提供内置分片算法,而是通过分片策略将各种场景提炼出来,提供更高层级的抽象,并提供接口让应用开发者自行实现分片算法。Sharding-JDBC 提供了 5 种分片策略(接口),策略全部继承自 ShardingStrategy,可以根据情况选择实现相应的接口。
StandardShardingStrategy
标准分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。
StandardShardingStrategy只支持单分片键,提供PreciseShardingAlgorithm和RangeShardingAlgorithm两个分片算法。
- PreciseShardingAlgorithm是必选的,用于处理=和IN的分片。
- RangeShardingAlgorithm是可选的,用于处理BETWEEN AND分片,如果不配置RangeShardingAlgorithm,SQL中的BETWEEN AND将按照全库路由处理。
ComplexShardingStrategy
复合分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。
ComplexShardingStrategy支持多分片键,由于多分片键之间的关系复杂,因此Sharding-JDBC并未做过多的封装,而是直接将分片键值组合以及分片操作符交于算法接口,完全由应用开发者实现,提供最大的灵活度。
InlineShardingStrategy
Inline表达式分片策略。使用Groovy的Inline表达式,提供对SQL语句中的=和IN的分片操作支持。
InlineShardingStrategy只支持单分片键,对于简单的分片算法,可以通过简单的配置使用,从而避免繁琐的Java代码开发,如: tuser${user_id % 8} 表示t_user表按照user_id按8取模分成8个表,表名称为t_user_0到t_user_7。
HintShardingStrategy
通过Hint而非SQL解析的方式分片的策略。
NoneShardingStrategy
不分片的策略。
1.1.1 、行表达式分片策略
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/inline-expression/
对应 InlineShardingStrategy 类。只支持单分片键,提供对=和 IN 操作的支持。行内表达式的配置比较简单。
例如:
${begin..end}表示范围区间
${[unit1, unit2, unit_x]}表示枚举值
t_user_$->{u_id % 8} 表示 t_user 表根据 u_id 模 8,而分成 8 张表,表名称为 t_user_0 到 t_user_7。
行表达式中如果出现连续多个${ expression }或$->{ expression }表达式,整个表达式最终的结果将会根据每个子表达式的结果进行笛卡尔组合。
例如,以下行表达式:
${['db1', 'db2']}_table${1..3}
最终会解析为:
db1_table1, db1_table2, db1_table3,
db2_table1, db2_table2, db2_table3
1.1.2 、标准分片策略(StandardShardingStrategy)
对应 StandardShardingStrategy 类。
标准分片策略只支持单分片键,提供了提供 PreciseShardingAlgorithm 和 RangeShardingAlgorithm 两个分片算法,分别对应于 SQL 语句中的=, IN 和 BETWEEN AND。
如果要使用标准分片策略,必须要实现 PreciseShardingAlgorithm,用来处理=和 IN 的分片。RangeShardingAlgorithm 是可选的。如果没有实现,SQL 语句会发到所有的数据节点上执行。
玩起来也特别简单
测试类
mybatis.mapper-locations=classpath:mapper/*.xml
mybatis.config-location=classpath:mybatis-config.xml
@RunWith(SpringRunner.class)
@SpringBootTest
@Slf4j
public class test {
@Resource
UserService userService; /**
* 先执行插入
*/
@Test
public void insert(){ userService.insert();
} @Test
public void select(){
UserInfo userInfo1= userService.getUserInfoByUserId(532299550304501761L);
System.out.println("------userInfo1:"+userInfo1); UserInfo userInfo2= userService.getUserInfoByUserId(532299547905359872L);
System.out.println("------userInfo2:"+userInfo2);
} }
@Configuration
@MapperScan(basePackages = "com.ghy.shardingjdbccostom.mapper", sqlSessionFactoryRef = "sqlSessionFactory")
public class DataSourceConfig {
@Bean
@Primary
public DataSource shardingDataSource() throws SQLException {
// 配置真实数据源
Map<String, DataSource> dataSourceMap = new HashMap<>(); // 配置第一个数据源
DruidDataSource dataSource1 = new DruidDataSource();
dataSource1.setDriverClassName("com.mysql.cj.jdbc.Driver");
dataSource1.setUrl("jdbc:mysql://localhost:3306/ds0?useUnicode=true&characterEncoding=utf-8&serverTimezone=GMT%2B8");
dataSource1.setUsername("root");
dataSource1.setPassword("root");
dataSourceMap.put("ds0", dataSource1); // 配置第二个数据源
DruidDataSource dataSource2 = new DruidDataSource();
dataSource2.setDriverClassName("com.mysql.cj.jdbc.Driver");
dataSource2.setUrl("jdbc:mysql://localhost:3306/ds1?useUnicode=true&characterEncoding=utf-8&serverTimezone=GMT%2B8");
dataSource2.setUsername("root");
dataSource2.setPassword("root");
dataSourceMap.put("ds1", dataSource2); // 配置Order表规则
TableRuleConfiguration orderTableRuleConfig = new TableRuleConfiguration("user_info", "ds${0..1}.user_info"); // 分表策略,使用 Standard 自定义实现,这里没有分表,表名固定为user_info
StandardShardingStrategyConfiguration tableInlineStrategy =
new StandardShardingStrategyConfiguration("user_id", new TblPreShardAlgo(),new TblRangeShardAlgo());
orderTableRuleConfig.setTableShardingStrategyConfig(tableInlineStrategy); // 分库策略,使用 Standard 自定义实现
StandardShardingStrategyConfiguration dataBaseInlineStrategy =new StandardShardingStrategyConfiguration("user_id", new DBShardAlgo());
orderTableRuleConfig.setDatabaseShardingStrategyConfig(dataBaseInlineStrategy); // 添加表配置
ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
shardingRuleConfig.getTableRuleConfigs().add(orderTableRuleConfig); // 获取数据源对象
DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig, new Properties());
return dataSource;
} // 事务管理器
@Bean
public DataSourceTransactionManager transactitonManager(DataSource shardingDataSource) {
return new DataSourceTransactionManager(shardingDataSource);
} }
public class DBShardAlgo implements PreciseShardingAlgorithm<Long> {
@Override
public String doSharding(Collection<String> collection, PreciseShardingValue<Long> preciseShardingValue) {
String db_name="ds";
Long num = preciseShardingValue.getValue()%2;
db_name = db_name + num;
for (String each : collection) {
if (each.equals(db_name)) {
return each;
}
}
throw new IllegalArgumentException();
} }
public class TblPreShardAlgo implements PreciseShardingAlgorithm<Long> {
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingColumn) {
// 不分表
for (String tbname : availableTargetNames) {
return tbname ;
}
throw new IllegalArgumentException();
}
}
public class TblRangeShardAlgo implements RangeShardingAlgorithm<Long> {
@Override
public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Long> rangeShardingValue) {
System.out.println("范围-*-*-*-*-*-*-*-*-*-*-*---------------"+availableTargetNames);
System.out.println("范围-*-*-*-*-*-*-*-*-*-*-*---------------"+rangeShardingValue);
Collection<String> collect = new LinkedHashSet<>();
Range<Long> valueRange = rangeShardingValue.getValueRange();
for (Long i = valueRange.lowerEndpoint(); i <= valueRange.upperEndpoint(); i++) {
for (String each : availableTargetNames) {
if (each.endsWith(i % availableTargetNames.size() + "")) {
collect.add(each);
}
}
}
//
return collect;
} }
其它业务层和数据库层代码和以前写法一样,后面代码会发布,就不一一搞了
1.1.3 、复合分片策略
比如:根据日期和 ID 两个字段分片,每个月 3 张表,先根据日期,再根据 ID 取模。对应 ComplexShardingStrategy 类。可以支持等值查询和范围查询。复合分片策略支持多分片键,提供了 ComplexKeysShardingAlgorithm,分片算法需要自己实现。由于多分片键之间的关系复杂,因此Sharding-JDBC并未做过多的封装,而是直接将分片键值组合以及分片操作符交于算法接口,完全由应用开发者实现,提供最大的灵活度
Sharding -jdbc 在使用分片策略的时候,与分片算法是成对出现的,每种策略都对应一到两种分片算法(不分片策略NoneShardingStrategy除外)
分库分表最核心的两点SQL 路由 、 SQL 改写 :
SQL 路由:解析原生SQL,确定需要使用哪些数据库,哪些数据表Route (路由)引擎:为什么要用Route 引擎呢?在实际查询当中,数据可能不只是存在一台MYSQL服务器上,
SELECT * FROM t_order WHERE order _id IN(1,3,6)
数据分布:
ds0.t_order0 (1,3,5,7) ds1.t_order0(2,4,6)
这个SELECT 查询就需要走2个database,如果这个SQL原封不动的执行,肯定会报错(表不存在),Sharding-jdbc 必须要对这个sql进行改写,将库名和表名 2个路由加上
SELECT * FROM ds0.t_order0 WHERE order _id IN(1,3) SELECT * FROM ds0.t_order1 WHERE order _id IN(6)
SQL 改写:将SQL 按照一定规则,重写FROM 的数据库和表名(Route 返回路由决定需要去哪些库表中执行SQL)
application.properties 配置
配置主要分为三个部分
- 配置数据源
- 分库配置
- 分表配置
# 复合分片
sharding.jdbc.datasource.names=ds0,ds1 sharding.jdbc.datasource.ds0.type=com.alibaba.druid.pool.DruidDataSource
sharding.jdbc.datasource.ds0.driver-class-name=com.mysql.jdbc.Driver
sharding.jdbc.datasource.ds0.url=jdbc:mysql://127.0.0.1:5306/ds0?useUnicode=yes&characterEncoding=utf8
sharding.jdbc.datasource.ds0.username=root
sharding.jdbc.datasource.ds0.password=root sharding.jdbc.datasource.ds1.type=com.alibaba.druid.pool.DruidDataSource
sharding.jdbc.datasource.ds1.driver-class-name=com.mysql.jdbc.Driver
sharding.jdbc.datasource.ds1.url=jdbc:mysql://127.0.0.1:5306/ds1?useUnicode=yes&characterEncoding=utf8
sharding.jdbc.datasource.ds1.username=root
sharding.jdbc.datasource.ds1.password=root # 分库配置 (行表达式分片策略 + 行表达式分片算法)
sharding.jdbc.config.sharding.default-database-strategy.inline.sharding-column=user_id
sharding.jdbc.config.sharding.default-database-strategy.inline.algorithm-expression=ds$->{user_id % 2}
sharding.jdbc.config.sharding.binding-tables=t_order,t_order_item # t_order分表配置 (复合分片策略)
sharding.jdbc.config.sharding.tables.t_order.actual-data-nodes=ds$->{0..1}.t_order$->{0..1}_$->{0..1}
sharding.jdbc.config.sharding.tables.t_order.table-strategy.complex.sharding-columns=user_id,order_id
sharding.jdbc.config.sharding.tables.t_order.table-strategy.complex.algorithm-class-name=ai.yunxi.sharding.config.ComplexShardingAlgorithm # t_order_item分表配置 (复合分片策略)
sharding.jdbc.config.sharding.tables.t_order_item.actual-data-nodes=ds$->{0..1}.t_order_item$->{0..1}_$->{0..1}
# 标准 和 inline 都是单分片键 ,复合分片策略可以配置则多分片键
sharding.jdbc.config.sharding.tables.t_order_item.table-strategy.complex.sharding-columns=user_id,order_id
# 自定义算法,让使用者根据业务自定义实现(开发性接口更灵活方便)
sharding.jdbc.config.sharding.tables.t_order_item.table-strategy.complex.algorithm-class-name=ai.yunxi.sharding.config.ComplexShardingAlgorithm # 定义广播表
sharding.jdbc.config.sharding.broadcast-tables=t_province sharding.jdbc.config.props.sql.show=true
自定义ComplexShardingAlgorithm
import io.shardingsphere.api.algorithm.sharding.ListShardingValue;
import io.shardingsphere.api.algorithm.sharding.ShardingValue;
import io.shardingsphere.api.algorithm.sharding.complex.ComplexKeysShardingAlgorithm;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List; public class ComplexShardingAlgorithm implements ComplexKeysShardingAlgorithm { /**
*
* @param collection 在加载配置文件时,会解析表分片规则。将结果存储到 collection中,doSharding()参数使用
* @param shardingValues SQL中对应的
* @return
*/
@Override
public Collection<String> doSharding(Collection<String> collection, Collection<ShardingValue> shardingValues) {
System.out.println("collection:" + collection + ",shardingValues:" + shardingValues); Collection<Integer> orderIdValues = getShardingValue(shardingValues, "order_id");
Collection<Integer> userIdValues = getShardingValue(shardingValues, "user_id"); List<String> shardingSuffix = new ArrayList<>(); // user_id,order_id分片键进行分表
for (Integer userId : userIdValues) {
for (Integer orderId : orderIdValues) {
String suffix = userId % 2 + "_" + orderId % 2;
for (String s : collection) {
if (s.endsWith(suffix)) {
shardingSuffix.add(s);
}
}
}
} return shardingSuffix;
} /**
* 例如: SELECT * FROM T_ORDER user_id = 100000 AND order_id = 1000009
* 循环 获取SQL 中 分片键列对应的value值
* @param shardingValues sql 中分片键的value值 -> 1000009
* @param key 分片键列名 -> user_id
* @return shardingValues 集合 -> [1000009]
*/
private Collection<Integer> getShardingValue(Collection<ShardingValue> shardingValues, final String key) {
Collection<Integer> valueSet = new ArrayList<>();
Iterator<ShardingValue> iterator = shardingValues.iterator();
while (iterator.hasNext()) {
ShardingValue next = iterator.next();
if (next instanceof ListShardingValue) {
ListShardingValue value = (ListShardingValue) next;
// user_id,order_id分片键进行分表
if (value.getColumnName().equals(key)) {
return value.getValues();
}
}
}
return valueSet;
}
}
1.1.4、 Hint 分片策略
Hint分片策略(HintShardingStrategy
)相比于上面几种分片策略稍有不同,这种分片策略无需配置分片健,分片健值也不再从 SQL中解析,而是由外部指定分片信息,让 SQL在指定的分库、分表中执行。ShardingSphere
通过 Hint
API实现指定操作,实际上就是把分片规则tablerule
、databaserule
由集中配置变成了个性化配置。
举个例子,如果我们希望订单表t_order
用 user_id
做分片健进行分库分表,但是 t_order
表中却没有 user_id
这个字段,这时可以通过 Hint API 在外部手动指定分片健或分片库。
下边我们这边给一条无分片条件的SQL,看如何指定分片健让它路由到指定库表。
SELECT * FROM t_order;
使用 Hint分片策略同样需要自定义,实现 HintShardingAlgorithm
接口并重写 doSharding()
方法。
/**
* @author xinzhifu
* @description hit分表算法
* @date 2020/11/2 12:06
*/
public class MyTableHintShardingAlgorithm implements HintShardingAlgorithm<String> { @Override
public Collection<String> doSharding(Collection<String> tableNames, HintShardingValue<String> hintShardingValue) { Collection<String> result = new ArrayList<>();
for (String tableName : tableNames) {
for (String shardingValue : hintShardingValue.getValues()) {
if (tableName.endsWith(String.valueOf(Long.valueOf(shardingValue) % tableNames.size()))) {
result.add(tableName);
}
}
}
return result;
}
}
自定义完算法只实现了一部分,还需要在调用 SQL 前通过 HintManager
指定分库、分表信息。由于每次添加的规则都放在 ThreadLocal
内,所以要先执行 clear()
清除掉上一次的规则,否则会报错;addDatabaseShardingValue
设置分库分片健键值,addTableShardingValue
设置分表分片健键值。setMasterRouteOnly
读写分离强制读主库,避免造成主从复制导致的延迟。
// 清除掉上一次的规则,否则会报错
HintManager.clear();
// HintManager API 工具类实例
HintManager hintManager = HintManager.getInstance();
// 直接指定对应具体的数据库
hintManager.addDatabaseShardingValue("ds",0);
// 设置表的分片健
hintManager.addTableShardingValue("t_order" , 0);
hintManager.addTableShardingValue("t_order" , 1);
hintManager.addTableShardingValue("t_order" , 2); // 在读写分离数据库中,Hint 可以强制读主库
hintManager.setMasterRouteOnly();
debug 调试看到,我们对 t_order
表设置分表分片健键值,可以在自定义的算法 HintShardingValue
参数中成功拿到。
properties
文件中配置无需再指定分片健,只需自定义的 Hint分片算法类路径即可。
# Hint分片算法
spring.shardingsphere.sharding.tables.t_order.table-strategy.hint.algorithm-class-name=com.ghy.shardingjdbccostom.config.MyTableHintShardingAlgorithm
1.1.5、 不分片策略
对应 NoneShardingStrategy。不分片的策略(只在一个节点存储)。
1.2、分片算法
创建了分片策略之后,需要进一步实现分片算法,作为参数传递给分片策略。Sharding-JDBC 目前提供 4 种分片算法。
1.2.1 、精确分片算法
对应 PreciseShardingAlgorithm,用于处理使用单一键作为分片键的=与 IN 进行分片的场景。需要配合 StandardShardingStrategy 使用。
1.2.2、 范围分片算法
对应 RangeShardingAlgorithm,用于处理使用单一键作为分片键的 BETWEEN AND 进行分片的场景。需要配合 StandardShardingStrategy 使用。如果不配置范围分片算法,范围查询默认会路由到所有节点。
1.2.3 、复合分片算法
对应 ComplexKeysShardingAlgorithm,用于处理使用多键作为分片键进行分片的场景,包含多个分片键的逻辑较复杂,需要应用开发者自行处理其中的复杂度。需要配合 ComplexShardingStrategy 使用。
1.2.4 、Hint 分片算法
对应 HintShardingAlgorithm ,用于处理使用 Hint 行分片的场景。 需要配合 HintShardingStrategy 使用。
二、Sharding-JDBC 总结
https://github.com/apache/shardingsphere
https://shardingsphere.apache.org/document/legacy/4.x/document/cn/overview/
2.1、数据源选择的解决方案层次
DAO:AbstractRoutingDataSource
ORM:MyBatis 插件
JDBC:Sharding-JDBC
Proxy:Mycat、Sharding-Proxy
Server:特定数据库或者版本
2.2、基本特性
定位为轻量级 Java 框架,在 Java 的 JDBC 层提供的额外服务。 它使用客户端直连数据库,以 jar 包形式提供服务,无需额外部署和依赖,可理解为增强版的 JDBC 驱动,完全兼容 JDBC 和各种 ORM 框架。也就是说,在 maven 的工程里面,我们使用它的方式是引入依赖,然后进行配置就可以了,不用像 Mycat 一样独立运行一个服务,客户端不需要修改任何一行代码,原来是 SSM 连接数据库,还是 SSM,因为它是支持 MyBatis 的。跟 mycat 一样,因为数据源有多个,所以要配置数据源,而且分片规则是定义在客户端的。
2.3、架构
我们在项目内引入 Sharding-JDBC 的依赖,我们的业务代码在操作数据库的时候,就会通过 Sharding-JDBC 的代码连接到数据库。也就是分库分表的一些核心动作,比如 SQL 解析,路由,执行,结果处理,都是由它来完成的。它工作在客户端。
当然,在 Sharding-Sphere 里面同样提供了代理 Proxy 的版本,跟 Mycat 的作用是一样的。Sharding-Sidecar 是一个 Kubernetes 的云原生数据库代理,正在开发中
2.4、功能
分库分表后的几大问题,Sharding-JDBC 全部解决了:跨库关联查询(ER 表)、排序翻页计算、分布式事务、全局主键
2.4.1、 全局 ID
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/key-generator/
无中心化分布式主键(包括 UUID 雪花 SNOWFLAKE)使用 key-generator-column-name 配置,生成了一个 18 位的 ID。
Properties 配置:
spring.shardingsphere.sharding.tables.user_info.key-generator.column=user_id
spring.shardingsphere.sharding.tables.user_info.key-generator.type=SNOWFLAKE
keyGeneratorColumnName:指定需要生成 ID 的列
KeyGenerotorClass:指定生成器类,默认是 DefaultKeyGenerator.java,里面使用了雪花算法。
注意:ID 要用 BIGINT。Mapper.xml insert 语句里面不能出现主键。否则会报错:Sharding value must implements Comparable
三、分布式事务
我们用到分布式事务的场景有两种,一种是跨应用(比如微服务场景),一种是单应用多个数据库(分库分表的场景),对于代码层的使用来说的一样的。
3.1、事务概述
https://shardingsphere.apache.org/document/current/cn/features/transaction/
XA 模型的不足:需要锁定资源
SEATA:支持 AT、XA、TCC、SAGA
SEATA 是一种全局事务的框架。
3.2、两阶段事务-XA
玩起来也特别容易首先添加依赖
<dependency> <groupId>org.apache.shardingsphere</groupId> <artifactId>sharding-transaction-xa-core</artifactId> <version>4.1.1</version> </dependency>
然后在业务层上加入下面注解就可以了
@ShardingTransactionType(TransactionType.XA) @Transactional(rollbackFor = Exception.class)
3.3 、柔性事务 Seata
https://seata.io/zh-cn/docs/overview/what-is-seata.html
https://github.com/seata/seata
https://github.com/seata/seata-workshop(官网推荐的搭建例子教程)
https://github.com/seata/seata-samples(官网推荐的搭建例子教程)
四、 Sharding-JDBC 工作流程
https://shardingsphere.apache.org/document/current/cn/features/sharding/principle/
ShardingSphere 的 3 个产品的数据分片主要流程是完全一致的。 核心由 SQL 解析 => 执行器优化 => SQL 路由 => SQL 改写 => SQL 执行 => 结果归并
的流程组成。
4.1、SQL 解析
分为词法解析和语法解析。 先通过词法解析器将 SQL 拆分为一个个不可再分的单词。再使用语法解析器对 SQL 进行理解,并最终提炼出解析上下文。 解析上下文包括表、选择项、排序项、分组项、聚合函数、分页信息、查询条件以及可能需要修改的占位符的标记。目前常见的 SQL 解析器主要有 fdb,jsqlparser和 Druid。Sharding-JDBC1.4.x 之前的版本使用 Druid 作为 SQL 解析器。从 1.5.x 版本开始,Sharding-JDBC 采用完全自研的 SQL 解析引擎。
4.2、执行器优化
合并和优化分片条件,如 OR 等。
4.3、SQL 路由
根据解析上下文匹配用户配置的分片策略,并生成路由路径。目前支持分片路由和广播路由。
SQL 路由是根据分片规则配置以及解析上下文中的分片条件,将 SQL 定位至真正的数据源。它又分为直接路由、简单路由和笛卡尔积路由。
直接路由,使用 Hint 方式。
Binding 表是指使用同样的分片键和分片规则的一组表,也就是说任何情况下, Binding 表的分片结果应与主表一致。例如:order 表和 order_item 表,都根据 order_id 分片,结果应是 order_1 与 order_item_1 成对出现。这样的关联查询和单表查询复杂度和性能相当。如果分片条件不是等于,而是 BETWEEN 或 IN,则路由结果不一定落入单库(表),因此一条逻辑 SQL 最终可能拆分为多条 SQL 语句。
笛卡尔积查询最为复杂,因为无法根据 Binding 关系定位分片规则的一致性,所以非 Binding 表的关联查询需要拆解为笛卡尔积组合执行。查询性能较低,而且数据库连接数较高,需谨慎使用。
4.4、SQL 改写
例如:将逻辑表名称改成真实表名称,优化分页查询等。
4.5 、SQL 执行
因为可能链接到多个真实数据源, Sharding -JDBC 将采用多线程并发执行 SQL。
4.6、结果归并
例如数据的组装、分页、排序等等。
Sharding-JDBC中所有的代码:https://github.com/ljx958720/springSphere.git
Sharding-JDBC分片策略详解(二)的更多相关文章
- guava-retrying 源码解析(等待策略详解)
一.等待策略相关类: 1.等待策略接口:WaitStrategy接口 该接口只有一个方法,就是返回尝试失败之后,下一次尝试之前的等待时间.long computeSleepTime(Attempt f ...
- logback -- 配置详解 -- 二 -- <appender>
附: logback.xml实例 logback -- 配置详解 -- 一 -- <configuration>及子节点 logback -- 配置详解 -- 二 -- <appen ...
- [转帖]Nginx服务器的六种负载均衡策略详解
Nginx服务器的六种负载均衡策略详解 咔咔侃技术 2019-09-11 17:40:12 一.关于Nginx的负载均衡 在服务器集群中,Nginx起到一个代理服务器的角色(即反向代理),为了避免单独 ...
- Shiro 安全框架详解二(概念+权限案例实现)
Shiro 安全框架详解二 总结内容 一.登录认证 二.Shiro 授权 1. 概念 2. 授权流程图 三.基于 ini 的授权认证案例实现 1. 实现原理图 2. 实现代码 2.1 添加 maven ...
- 七牛云存储Python SDK使用教程 - 上传策略详解
文 七牛云存储Python SDK使用教程 - 上传策略详解 七牛云存储 python-sdk 七牛云存储教程 jemygraw 2015年01月04日发布 推荐 1 推荐 收藏 2 收藏,2.7k ...
- .NET DLL 保护措施详解(二)关于性能的测试
先说结果: 加了缓存的结果与C#原生代码差异不大了 我对三种方式进行了测试: 第一种,每次调用均动态编译 第二种,缓存编译好的对象 第三种,直接调用原生C#代码 .net dll保护系列 ------ ...
- PopUpWindow使用详解(二)——进阶及答疑
相关文章:1.<PopUpWindow使用详解(一)——基本使用>2.<PopUpWindow使用详解(二)——进阶及答疑> 上篇为大家基本讲述了有关PopupWindow ...
- Android 布局学习之——Layout(布局)详解二(常见布局和布局参数)
[Android布局学习系列] 1.Android 布局学习之——Layout(布局)详解一 2.Android 布局学习之——Layout(布局)详解二(常见布局和布局参数) 3.And ...
- 爬虫入门之urllib库详解(二)
爬虫入门之urllib库详解(二) 1 urllib模块 urllib模块是一个运用于URL的包 urllib.request用于访问和读取URLS urllib.error包括了所有urllib.r ...
随机推荐
- CI框架导入 excel
整合PHP Excel和PHPexcelReader到 librarys下面 两个excel整合成一个excel <?php class Excel extends Control ...
- Module not found: Can't resolve 'bootstrap/dist/css/bootstrap-theme.css' in 'C:\react-form-validation-demo\src'
此错误是由配置错误.版本不匹配或引导安装损坏引起的.如果已经安装了引导程序和反应引导程序,则可以通过以下方式进行更改: npm install --save bootstrap@^4.0.0-al ...
- java.sql.SQLException: Error: Error: could not match input
impala执行sql,输出后我在控制台粘贴执行OK,奇怪了. java.sql.SQLException: Error: Error: could not match input 原因竟然是myba ...
- 利用 Github Actions 的 service container 进行集成测试
Github Action 中 Service Container 的使用 Intro 之前写过一个 StackExchange.Redis 的一个扩展,测试项目依赖 redis,所以之前测试一直只是 ...
- python菜鸟教程学习3:基础语法
菜鸟教程对应网址:https://www.runoob.com/python3/python3-basic-syntax.html 编码:python3用UTF-8编码,所有字符串都是unicode字 ...
- 【进阶之路】Redis基础知识两篇就满足(一)
导言 大家好,我是南橘,一名练习时常两年半的java练习生,这是我在博客园的第一篇文章,当然,都是要从别处搬运过来的,不过以后新的文章也会在博客园同步发布,希望大家能多多支持^_^ 这篇文章的出现,首 ...
- Weblogic CVE-2020-2551漏洞复现&CS实战利用
Weblogic CVE-2020-2551漏洞复现 Weblogic IIOP 反序列化 漏洞原理 https://www.anquanke.com/post/id/199227#h3-7 http ...
- kali 系列学习08-安卓逆向
可以轻松把安卓apk的源码逆向出来,逆向有什么用,比如手机apk木马,可以用于追踪黑客,详见 https://cloud.tencent.com/developer/news/179336 用2个工 ...
- 怎么在苹果笔记本上用Folx重新下载已完成的任务
大家在完成了任务下载后,有时会将下载的文件移动到其他文件夹中,或者是,当下载的文件已经使用完毕时,有些用户会将文件删除.以上的两种情况,都会导致Folx所属任务查看功能失效,也就是说,无法找到任务对应 ...
- CorelDRAW极具创意的多边形工具
这是一个简单的教程,它展示了使用三种基本的CorelDRAW工具打造的创意性成果:多边形工具.挑选工具和形状工具. CorelDRAW 可让您以非常直观的方式创建多边形.尽管多边形工具乍看起来并不像一 ...