用户行为数据的二分图表示

用户的购买行为很容易可以用二分图(二部图)来表示。并且利用图的算法进行推荐。基于邻域的模型也可以成为基于图的模型,因为基于邻域的模型都是基于图的模型的简单情况。我们可以用二元组\((u,i)\)来表示用户\(u\)对物品\(i\)有过购买行为,这样的话数据集可以用一个二分图来表示。我这里尝试画一个二分图(有点丑,不要介意哈):

graph LR
A(A) -->a[a]
A(A) -->b[b]
A(A) -->d[d]
B(B) -->b[b]
B(B) -->c[c]

左边是用户节点,右边是物品节点。连线代表用户对物品有过购买行为。

基于图的推荐算法

我们把个性化推荐算法放在二分图当中,给用户推荐物品就转变成了度量用户节点和商品节点的相关性,相关性越高的物品在推荐列表当中的权重就越大。一般来说顶点相关性取决于三个方面:

  • 两个顶点之间的路径数;
  • 两个顶点之间路径的长度;
  • 两个顶点之间的路径经过的顶点。

相关性高的一对顶点一般具有如下特征:

  • 两个顶点之间有很多路径相连;
  • 连接两个顶点之间的路径长度都比较短;
  • 连接两个顶点之间的路径不会经过出度比较大的顶点。

基于上面3个主要因素,研究人员设计了很多计算图中顶点之间相关性的方法。下一节将介绍一种基于随机游走的PersonalRank算法。

PersonalRank

假设要给用户\(u\)进行个性化推荐,可以从用户\(u\)对应的节点\(v_u\)开始在用户物品二分图上进行随机游走。游走到任何一个节点时,首先按照概率\(\alpha\)决定是继续游走,还是停止这次游走并从\(v_u\)节点开始重新游走。如果决定继续游走,那么就从当前节点指向的节点中按照均匀分布随机选择一个节点作为游走下次经过的节点。这样,经过很多次随机游走后,每个物品节点被访问到的概率会收敛到一个数。最终的推荐列表中物品的权重就是物品节点的访问概率。

\[\begin{equation}
\mathrm{PR}(V)=\left\{
\begin{aligned}
\alpha \sum_{v' \in \mathrm{in}(v)}\frac{\mathrm{PR}(v')}{|\mathrm{out}(v')|}\quad (v \ne v_u)\\
(1-\alpha)+\alpha\sum_{v' \in \mathrm{in}(v)}\frac{\mathrm{PR}(v')}{|\mathrm{out}(v')|}\quad (v=v_u)
\end{aligned}
\right.
\end{equation}
\]

用代码来表示:

def PersonalRank(G, alpha, root):
rank = dict()
rank = {x:0 for x in G.keys()}
rank[root] = 1
for k in range(20):
tmp = {x:0 for x in G.keys()}
for i, ri in G.items():
for j, wij in ri.items():
if j not in tmp:
tmp[j] = 0
tmp[j] += 0.6 * rank[i] / (1.0 * len(ri))
if j == root:
tmp[j] += 1 - alpha
rank = tmp
return rank

虽然PersonalRank算法可以通过随机游走进行比较好的理论解释,但该算法在时间复杂度上有明显的缺点。因为在为每个用户进行推荐时,都需要在整个用户物品二分图上进行迭代,直到整个图上的每个顶点的PR值收敛。这一过程的时间复杂度非常高,不仅无法在线提供实时推荐,甚至离线生成推荐结果也很耗时。为了解决PersonalRank每次都需要在全图迭代并因此造成时间复杂度很高的问题,这里给出 两种解决方案。第一种很容易想到,就是减少迭代次数,在收敛之前就停止。这样会影响最终的 精度,但一般来说影响不会特别大。另一种方法就是从矩阵论出发,重新设计算法。

我们将PR算法设计成矩阵的形式,令\(M\)为二分图的转移概率矩阵,即

\[M(v,v')=\frac{1}{\mathrm{out}(v)}
\]

那么迭代公式修改为:

\[r = (1-\alpha)r_0 + \alpha M^T r
\]

我们解一下这个方程

\[r = (1-\alpha)(1-\alpha M^T)^{-1}r_0
\]

这里的\((1-\alpha M^T)\)是稀疏矩阵,对其快速求逆即可。

后记

最近这两天出去过节了,断更了几天,我又开始继续更新这个系列了。这个系列后续可能就比较快的更新完,再说一个好消息,更新完这个系列之后,王喆编著的《深度学习推荐系统》以及相关的实践课程视频我也买了,将继续更新《深度学习推荐系统》以及实践视频课的读书笔记,大家可以关注一下,敬请期待。

推荐系统实践 0x09 基于图的模型的更多相关文章

  1. 推荐系统实践 0x07 基于邻域的算法(2)

    基于邻域的算法(2) 上一篇我们讲了基于用户的协同过滤算法,基本流程就是寻找与目标用户兴趣相似的用户,按照他们对物品喜好的对目标用户进行推荐,其中哪些相似用户的评分要带上目标用户与相似用户的相似度作为 ...

  2. 推荐系统| ② 离线推荐&基于隐语义模型的协同过滤推荐

    一.离线推荐服务 离线推荐服务是综合用户所有的历史数据,利用设定的离线统计算法和离线推荐算法周期性的进行结果统计与保存,计算的结果在一定时间周期内是固定不变的,变更的频率取决于算法调度的频率. 离线推 ...

  3. 推荐系统实践 0x06 基于邻域的算法(1)

    基于邻域的算法(1) 基于邻域的算法主要分为两类,一类是基于用户的协同过滤算法,另一类是基于物品的协同过滤算法.我们首先介绍基于用户的协同过滤算法. 基于用户的协同过滤算法(UserCF) 基于用户的 ...

  4. 推荐系统之基于图的推荐:基于随机游走的PersonalRank算法

    转自http://blog.csdn.net/sinat_33741547/article/details/53002524 一 基本概念 基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思 ...

  5. DCOS实践分享(1):基于图形化模型设计的应用容器化实践

    2015年11月29日,Mesos Meetup 第三期 - 北京技术沙龙成功举行.本次活动由数人科技CTO 肖德时 和 Linker Networks 的 Sam Chen 一起组织发起. 在这次m ...

  6. SOA实践之基于服务总线的设计

    在上文中,主要介绍了SOA的概念,什么叫做“服务”,“服务”应该具备哪些特性.本篇中,我将介绍SOA的一种很常见的设计实践--基于服务总线的设计. 基于服务总线的设计 基于总线的设计,借鉴了计算机内部 ...

  7. 用PersonalRank实现基于图的推荐算法

    今天我们讲一个下怎么使用随机游走算法PersonalRank实现基于图的推荐. 在推荐系统中,用户行为数据可以表示成图的形式,具体来说是二部图.用户的行为数据集由一个个(u,i)二元组组成,表示为用户 ...

  8. TF-IDF计算方法和基于图迭代的TextRank

    文本处理方法概述 说明:本篇以实践为主,理论部分会尽量给出参考链接 摘要: 1.分词 2.关键词提取 3.主题模型(LDA/TWE) 4.词的两种表现形式(词袋模型和分布式词向量) 5.关于文本的特征 ...

  9. 基于图的异常检测(三):GraphRAD

    基于图的异常检测(三):GraphRAD 风浪 一个快乐的数据玩家/风控/图挖掘 24 人赞同了该文章 论文:<GraphRAD: A Graph-based Risky Account Det ...

随机推荐

  1. python机器学习实现K-近邻算法(KNN)

    机器学习 K-近邻算法(KNN) 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 后打开浏览器输入网址htt ...

  2. Linux下开发环境的搭建(For C++ OIer)

    说句实话,对于OIer来说,Linux真的是个很好的开发平台. 这里既没有游戏的喧嚣,也没有广告的打扰,gcc/g++早已预装,一切已为你准备好......(???)即使对于日常使用,也绰绰有余. 如 ...

  3. XJOI NOIP501/511训练22 ttt学字符串

    ttt学字符串 题目大意 大法师ttt 最近在学习字符串,有一天他看到魔力xtx左手拿着A字符串,右手拿着B字符串,两个字符串的长度都是一样的,而且都由abc三种字符构成,大法师ttt的灵力值为C,现 ...

  4. deepin 20 镜像源

    deepin 20 镜像源 ## Generated by deepin-installerdeb [by-hash=force] https://community-packages.deepin. ...

  5. Pandas_工资集处理

    import numpy as np import pandas as pd from pandas import Series,DataFrame # 1--读取数据文件 file_obj=open ...

  6. Vue3.0响应式原理

    Vue3.0的响应式基于Proxy实现.具体代码如下: 1 let targetMap = new WeakMap() 2 let effectStack = [] //存储副作用 3 4 const ...

  7. nginx&http 第三章 ngx HTTP 请求的 11 个处理阶段

    nginx 将一个 HTTP 请求分为 11 个处理阶段,这样做让每一个 HTTP 模块可以仅仅专注于完成一个独立.简单的功能,而一个请求的完整处理过程可以由多个 HTTP 模块共同合作完成将一次 H ...

  8. Socket connect 等简要分析

    connect 系统调用 分析 #include <sys/types.h> /* See NOTES */#include <sys/socket.h>int connect ...

  9. 通过ceph-deploy安装不同版本ceph

    之前有在论坛写了怎么用 yum 安装 ceph,但是看到ceph社区的群里还是有人经常用 ceph-deploy 进行安装,然后会出现各种不可控的情况,虽然不建议用ceph-deploy安装,但是既然 ...

  10. Python面试题_初级版

    1.如何在一个函数内部修改全局变量 a=5 def fn(): a=4 fn() print(a) # 5 #在一个函数内部修改全局变量 a=5 def fn(): global a a=4 fn() ...