挖个大坑,等有空了再回来填。心心念念的大综述呀(吐血三升)!

郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!

项目地址:https://github.com/open-intelligence/federated-learning-chinese

具体内容参见项目地址,欢迎大家在项目的issue上提出问题!!!

Abstract

  联邦学习(FL)是一种机器学习环境,其中许多客户端(如移动设备或整个组织)在中央服务器(如服务提供商)的协调下协同训练模型,同时保持训练数据去中心化。FL体现了集中数据收集和最小化的原则,可以减轻传统的中心化机器学习和数据科学方法带来的许多系统隐私风险和成本。在FL研究爆炸式增长的推动下,本文讨论了近年来的进展,提出了大量的开放性问题和挑战。

Contents

1 Introduction

  1.1 The Cross-Device Federated Learning Setting

    1.1.1 The Lifecycle of a Model in Federated Learning

    1.1.2 A Typical Federated Training Process

  1.2 Federated Learning Research

  1.3 Organization

2 Relaxing the Core FL Assumptions: Applications to Emerging Settings and Scenarios

  2.1 Fully Decentralized / Peer-to-Peer Distributed Learning

    2.1.1 Algorithmic Challenges

    2.1.2 Practical Challenges

  2.2 Cross-Silo Federated Learning

  2.3 Split Learning

3 Improving Efficiency and Effectiveness

  3.1 Non-IID Data in Federated Learning

    3.1.1 Strategies for Dealing with Non-IID Data

  3.2 Optimization Algorithms for Federated Learning

    3.2.1 Optimization Algorithms and Convergence Rates for IID Datasets

    3.2.2 Optimization Algorithms and Convergence Rates for Non-IID Datasets

  3.3 Multi-Task Learning, Personalization, and Meta-Learning

    3.3.1 Personalization via Featurization

    3.3.2 Multi-Task Learning

    3.3.3 Local Fine Tuning and Meta-Learning

    3.3.4 When is a Global FL-trained Model Better?

  3.4 Adapting ML Workflows for Federated Learning

    3.4.1 Hyperparameter Tuning

    3.4.2 Neural Architecture Design

    3.4.3 Debugging and Interpretability for FL

  3.5 Communication and Compression

  3.6 Application To More Types of Machine Learning Problems and Models

4 Preserving the Privacy of User Data

  4.1 Actors, Threat Models, and Privacy in Depth

  4.2 Tools and Technologies

    4.2.1 Secure Computations

    4.2.2 Privacy-Preserving Disclosures

    4.2.3 Verifiability

  4.3 Protections Against External Malicious Actors

    4.3.1 Auditing the Iterates and Final Model

    4.3.2 Training with Central Differential Privacy

    4.3.3 Concealing the Iterates

    4.3.4 Repeated Analyses over Evolving Data

    4.3.5 Preventing Model Theft and Misuse

  4.4 Protections Against an Adversarial Server

    4.4.1 Challenges: Communication Channels, Sybil Attacks, and Selection

    4.4.2 Limitations of Existing Solutions

    4.4.3 Training with Distributed Differential Privacy

    4.4.4 Preserving Privacy While Training Sub-Models

  4.5 User Perception

    4.5.1 Understanding Privacy Needs for Particular Analysis Tasks

    4.5.2 Behavioral Research to Elicit Privacy Preferences

5 Robustness to Attacks and Failures

  5.1 Adversarial Attacks on Model Performance

    5.1.1 Goals and Capabilities of an Adversary

    5.1.2 Model Update Poisoning

    5.1.3 Data Poisoning Attacks

    5.1.4 Inference-Time Evasion Attacks

    5.1.5 Defensive Capabilities from Privacy Guarantees

  5.2 Non-Malicious Failure Modes

  5.3 Exploring the Tension between Privacy and Robustness

6 Ensuring Fairness and Addressing Sources of Bias

  6.1 Bias in Training Data

  6.2 Fairness Without Access to Sensitive Attributes

  6.3 Fairness, Privacy, and Robustness

  6.4 Leveraging Federation to Improve Model Diversity

  6.5 Federated Fairness: New Opportunities and Challenges

7 Concluding Remarks

A Software and Datasets for Federated Learning

Advances and Open Problems in Federated Learning的更多相关文章

  1. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning

    In federated learning, multiple client devices jointly learn a machine learning model: each client d ...

  2. How to handle Imbalanced Classification Problems in machine learning?

    How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidh ...

  3. 联邦学习(Federated Learning)

    联邦学习简介        联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...

  4. 联邦学习 Federated Learning 相关资料整理

    本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...

  5. Federated Learning: Challenges, Methods, and Future Directions

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤立的数据中心( ...

  6. Overcoming Forgetting in Federated Learning on Non-IID Data

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning ...

  7. Reliable Federated Learning for Mobile Networks

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abst ...

  8. 【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits

    Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in ...

  9. 【流行前沿】联邦学习 Federated Learning with Only Positive Labels

    核心问题:如果每个用户只有一类数据,如何进行联邦学习? Felix X. Yu, , Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Kumar ...

随机推荐

  1. DVWA SQL 注入关卡初探

    1. 判断回显 给id参数赋不同的值,发现有不同的返回信息 2. 判断参数类型 在参数后加 ' ,查看报错信息 数字型参数左右无引号,字符型参数左右有引号 4. 引号闭合与布尔类型判断 由于是字符型参 ...

  2. encode 和 decode 的使用

    txt = '我是字符串' txt_encode = txt.encode() print(txt) # 我是字符串 print(txt_encode) # b'\xe6\x88\x91\xe6\x9 ...

  3. Python 字典(Dictionary) len()方法

    Python 字典(Dictionary) len()方法 描述 Python 字典(Dictionary) len() 函数计算字典元素个数,即键的总数.高佣联盟 www.cgewang.com 语 ...

  4. 省选模拟赛day4

    怎么说?发现自己越来越菜了 到了不写题解写不出来题目的地步了.. 这次题目我都有认真思考 尽管思考的时候状态不太好 但是 我想 再多给我时间也思考不出来什么吧 所以写一份题解. T1 n个点的有根树 ...

  5. Android中的LruCache的原理和使用

    Android中的LruCache的原理和使用 LruCache,虽然很多文章都把LRU翻译成"最近最少使用"缓存策略,但Android中的LruCache真的如此吗? 答案是No ...

  6. 014_go语言中的变参函数

    代码演示 package main import "fmt" func sum(nums ...int) { fmt.Print(nums, " ") toto ...

  7. 如何利用Python在网上接单,兼职也能月薪过万

  8. C语言学习笔记之数据类型转换

    1.整数与整数相除,结果也为整数 2.不同类型的运算,精度低的向精度高的转化 整数与浮点数运算就是个很好的例子,只要有一方为浮点数,结果也是浮点数,这也体现出精度低向精度高转化 3.在赋值运算中,等号 ...

  9. Prometheus监控神器-Alertmanager篇(1)

    本章节主要涵盖了Alertmanager的工作机制与配置文件的比较详细的知识内容,由浅入深的给大家讲解. 警报一直是整个监控系统中的重要组成部分,Prometheus监控系统中,采集与警报是分离的.警 ...

  10. 朴素贝叶斯算法java实现(多项式模型)

    网上有很多对朴素贝叶斯算法的说明的文章,在对算法实现前,参考了一下几篇文章: NLP系列(2)_用朴素贝叶斯进行文本分类(上) NLP系列(3)_用朴素贝叶斯进行文本分类(下) 带你搞懂朴素贝叶斯分类 ...