题目戳我

\(\text{Solution:}\)

题目很显然可以设\(dp[i]\)表示\(i\)的子树内的关键点都不和\(i\)联通的最小待机,有如下\(dp\)方程:

\(v\in son_u,v\in key:dp[u]+=dis(u,v)\)

\(v\in son_u,v\not\in key:dep[u]+=\min(dis(u,v),dp[v])\)

但是暴力\(dp\)复杂度\(O(nm).\)观察\(k\)的大小发现,每一次都是有很多点不需要\(dp\)的。

于是我们可以考虑把原树根据所\(dp\)的关键点浓缩成一棵小一些的树,这便是虚树

虚树中包含的点只有各个关键点及其\(LCA,LCA\)的\(LCA\)等。

考虑用单调栈维护链来把这个虚树构造出来。

首先处理出\(LCA\),这里我选择的倍增。然后处理出字典序。

对每一次的关键点,对其按照字典序排序后,把根加入栈中。

对于下一次新加入的点:

  • 先求出当前要入栈的点和栈顶的\(LCA\).并向后比对。大于它深度的弹出栈,对每一个点在构造虚树的时候把其父亲记录下来。

  • 若当前栈顶元素等于\(LCA\)则终止弹栈。

  • 若当前栈顶元素的下一个元素深度小于\(LCA\),则将当前栈顶元素的父亲认为\(LCA\)并弹出此栈顶,终止弹栈。

  • 终止后,若\(LCA\)没有进过栈,则将其入栈,并将其父亲认为其入栈前的栈顶元素。

  • 最后,当前元素入栈,认父亲为当前栈顶元素。

  • 用一个数组将所有进过栈的元素储存下来,这便是虚树中的所有元素。又因为之前记录过父亲,这虚树就可以被还原出来。

  • 对数组中的元素按照字典序排序后用非递归的方式进行\(dp\)即可。

非虚树代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN=5e5+10;
int dp[MAXN],n,m,h[MAXN],tot,head[MAXN];
struct E{int nxt,to,dis;}e[MAXN];
int vis[MAXN];
inline void add(int x,int y,int w){
e[++tot]=(E){head[x],y,w};
head[x]=tot;
}
void dfs(int x,int fa){
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].to;
if(j==fa)continue;
dfs(j,x);
if(vis[j])dp[x]+=e[i].dis;
else dp[x]+=min(dp[j],e[i].dis);
dp[j]=0;
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<n;++i){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);add(y,x,z);
}
scanf("%d",&m);
while(m--){
int x;
scanf("%d",&x);
for(int i=1;i<=x;++i){
scanf("%d",h+i);
vis[h[i]]=1;
}
dfs(1,0);printf("%d\n",dp[1]);dp[1]=0;
for(int i=1;i<=x;++i)vis[h[i]]=0;
}
return 0;
}

虚树代码(附注释):

#include<bits/stdc++.h>
using namespace std;
const int MAXN=5e5+10;
const int inf=(1<<30);
char buf[1<<21],*p1=buf,*p2=buf;
inline int read(){
#define gc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char ch=gc();int s=0;
while(!isdigit(ch))ch=gc();
while(isdigit(ch))s=s*10-48+ch,ch=gc();
return s;
}
int tot,id,dfn[MAXN],n,m,st[MAXN],dp[MAXN],M[MAXN][22],pa[MAXN];
int f[MAXN][22],head[MAXN],h[MAXN],top,dep[MAXN],vis[MAXN],L;
struct E{int nxt,to,dis;}e[MAXN];
inline void add(int x,int y,int w){
e[++tot]=(E){head[x],y,w};
head[x]=tot;
}
int TM,yy[MAXN],val[MAXN];
long long ans[MAXN];
void dfs(int x,int fa){
dfn[x]=++id,dep[x]=dep[fa]+1,f[x][0]=fa;
for(int i=1;i<=20;++i){
f[x][i]=f[f[x][i-1]][i-1];
M[x][i]=min(M[x][i-1],M[f[x][i-1]][i-1]);
}
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].to;
if(j==fa)continue;
M[j][0]=e[i].dis;
dfs(j,x);
}
}
int lca(int x,int y){
if(dep[x]>dep[y])swap(x,y);
for(int i=21;i>=0;--i)if(dep[x]<=dep[y]-(1<<i))y=f[y][i];
if(x==y)return x;
for(int i=21;i>=0;--i)if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i];
return f[x][0];//LCA
}
bool cmp(int x,int y){return dfn[x]<dfn[y];}
int dis(int x,int y){
int ans=inf;
if(dep[x]<dep[y])swap(x,y);
for(int i=20;i>=0;--i){
if(dep[f[x][i]]>=dep[y])
ans=min(ans,M[x][i]),x=f[x][i];
if(x==y)return ans;
}
for(int i=21;i>=0;--i)if(f[x][i]!=f[y][i])ans=min(ans,min(M[x][i],M[y][i])),x=f[x][i],y=f[y][i];
return ans;//求两点间距离最小值
}
void Build(){
sort(h+1,h+L+1,cmp);
int tmp=L;top=0;
for(int i=1,l;i<=tmp;++i){
int u=h[i];
if(!top){
pa[u]=0;
st[++top]=u;
continue;
}
int w=lca(st[top],u);
//当前点和栈顶的LCA
while(dep[st[top]]>dep[w]){
if(dep[st[top-1]]<dep[w])pa[st[top]]=w;//如果下一个点的儿子是w,那么当前点的父亲就是w(维护链,按深度判断)
top--;//弹出
}
if(w!=st[top]){
h[++L]=w;
pa[w]=st[top];
st[++top]=w;
//如果w未进过栈,则其父亲是当前栈顶,h将其记录下,进栈
}
pa[u]=w,st[++top]=u;//u进栈,其父亲是上一个栈顶(w此时必然是栈顶)
}
sort(h+1,h+L+1,cmp);//现在h里面存了所有虚树上的点,按深度排序
}
void DP(){
for(int i=1;i<=L;++i)ans[h[i]]=0;//初始化
for(int i=L;i>=2;--i){//从深度最大的开始dp,第一个点一定是根 不dp
int u=h[i];
if(vis[u])ans[pa[u]]+=1ll*val[u];//基本dp不解释
else ans[pa[u]]+=min(1ll*val[u],ans[u]);
}
}
long long solve(){
for(int i=2;i<=L;++i)val[h[i]]=dis(h[i],pa[h[i]]);//预处理dis 倍增处理掉
DP();return ans[1];
}
int main(){
n=read();
for(int i=1;i<n;++i){
int x=read(),y=read(),z=read();
add(x,y,z);add(y,x,z);
}
m=read();dfs(1,0);//处理字典序 深度 边权最小值 LCA等信息
while(m--){
L=read()+1;h[1]=1;TM=L-1;//强制第一个点是1
for(int j=2;j<=L;++j)h[j]=read(),vis[h[j]]=1,yy[j-1]=h[j];
Build();printf("%lld\n",solve());
for(int i=1;i<=TM;++i)vis[yy[i]]=0;
}
return 0;
}

【学习笔记/题解】虚树/[SDOI2011]消耗战的更多相关文章

  1. 【学习笔记】虚树复习记(BZOJ2286 SDOI2011 消耗战)

    想写战略游戏却想不起来虚树T^T 所以就有了这篇复习记QwQ ——简介!—— 我们在处理树上问题的时候,dfs是一个常用手段,但是我们发现,如果一棵树上只有一部分关键点,每次dfs需要访问好多不是关键 ...

  2. 虚树------sdoi2011<消耗战>

    卡着时间过得,大概是因为全用了ll,时间涨了一倍吧?? 懒得改了,第一道虚树还是思路比较重要 下面这段文字是复制来的: 给出一棵树. 每次询问选择一些点,求一些东西.这些东西的特点是,许多未选择的点可 ...

  3. 【学习笔记】线段树—扫描线补充 (IC_QQQ)

    [学习笔记]线段树-扫描线补充 (IC_QQQ) (感谢 \(IC\)_\(QQQ\) 大佬授以本内容的著作权.此人超然于世外,仅有 \(Luogu\) 账号 尚可膜拜) [学习笔记]线段树详解(全) ...

  4. [模板] 虚树 && bzoj2286-[Sdoi2011]消耗战

    简介 虚树可以解决一些关于树上一部分节点的问题. 对于一棵树 \(T\) 的一个子集 \(S\), 可以在 \(O(|S| \log |S|)\) 的时间复杂度内求出 \(S\) 的虚树. 虚树包括根 ...

  5. 算法复习——虚树(消耗战bzoj2286)

    题目: Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战 ...

  6. 【学习笔记 边分树】【uoj400】【CTSC2018】暴力写挂

    题目 描述 ​ 有两棵树\(T\)和\(T'\),节点个数都为\(n\),根节点都为\(1\)号节点; ​ 求两两点之间 $$ \begin{align} depth(x) + depth(y) - ...

  7. 【学习笔记】动态树Link-Cut-Tree

    这是两个月前写的,看能不能搬运过来…… 动态树是一类维护森林连通性的问题(已纠正,感谢ZQC巨佬),目前最(wo)常(zhi)见(hui)的动态树就是LCT(Link-Cut-Tree),然而LCT似 ...

  8. SQL学习笔记之B+树的几点总结

    本文主要以列表形式将B+树的特点以及注意点等列出来,主要参考<算法导论>.维基百科.各大博客的内容,结合自己的理解写的,如内容有不当之处,请各位雅正. 0x00 前言 B树是为磁盘或其他直 ...

  9. 【loj2568】【APIO2016】【学习笔记 左偏树】烟花表演

    题目 一棵树,\(n\)个非叶子节点,编号为\(1-n\),\(m\)个叶子节点,编号为\(n+1-n+m\) 每条边有边权,修改边权的代价为\(|a-b|\) ; 定义一个叶子的距离为到1(根节点) ...

随机推荐

  1. 使用kind快速创建本地集群

    简 介 kind是另一个Kubernetes SIG项目,但它与minikube有很大区别.它可以将集群迁移到Docker容器中,这与生成虚拟机相比,启动速度大大加快.简而言之,kind是一个使用Do ...

  2. Android开发之viewpager导报错误解决方法:错误代码 Caused by: java.lang.ClassNotFoundException: Didn't find class

    作者:程序员小冰,CSDN博客:http://blog.csdn.net/qq_21376985 Caused by: java.lang.ClassNotFoundException: Didn't ...

  3. 关于bat批处理的一些操作,如启动jar 关闭进程等

    先说一下学习这个的前提: 公司要写个生成uid的工具,整完了之后就又整批处理工具,出于此目的,也是为了丰富自己的知识,就学习了一下,下面是相关的批处理脚本 我花了半天的时间找了相关的bat批处理,但是 ...

  4. 【经验分享】用adb揪出安卓APP弹窗广告的原形

    背景 相信不少安卓用户中过影子弹窗广告的困扰,这种推广APP本体在后台运行,而且可以在其他APP上弹出覆盖广告,一不小心就会误操作,点击广告或者下载APP,着实令人恶心. 以前的广告软件只在通知栏会推 ...

  5. 面试【JAVA基础】锁

    1.锁状态 锁的状态只能升级不能降级. 无锁 没有锁对资源进行锁定,所有线程都能访问并修改同一个资源,但同时只有一个线程能修改成功.其他修改失败的线程会不断重试,直到修改成功,如CAS原理和应用是无锁 ...

  6. css动画 loading

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. redis基础数据结构及编码方式

    redis基础数据结构和编码方式 一.基础数据结构 1)简单动态字符串 2)双端链表 3)字典 4)跳跃表 5)整数集合 6)压缩列表 二.对象类型与编码 在redis的数据库中创建一个新的键值对时, ...

  8. centOS7 安装jdk压缩包版

    1.到官网下载jdk https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 2.将压 ...

  9. Apache报错:无法使用可靠的服务器域名

    Apache 安装和启动时报错:无法使用可靠的服务器域名,打开Apache配置文件httpd.conf,去除 ServerName 前面的注释即可 1. 报错信息:无法使用可靠的服务器域名 AH005 ...

  10. Linux curl携带cookie测试接口

    问题: 休息在家,被告知要启动测试环境的一个定时任务,但是服务器在内网,连上vpn只能访问内网的开发环境,无法访问测试环境,于是进开发环境服务器,ping测试环境的ip,发现是通的,于是想到通过开发环 ...