tf.data卷积神经网络综合应用实例

使用tf.data建立自己的数据集,并使用CNN卷积神经网络实现对卫星图像的二分类问题。

数据下载链接:https://pan.baidu.com/s/141zi1BvDU6rHsq5VKgRl4Q  提取码:2kbc

1.使用tf.data建立数据集

使用tf.data将已有的图片打上标签,并将数据分为训练集与测试集用于训练神经网络。

下面将逐步介绍如何建立数据集。

1.1读取windows下的文件路径

首先,头文件走一波(python中应该叫导入模块)

1 import tensorflow as tf
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import pathlib
5 %matplotlib inline

注:我一直在使用jupyter notebook编写程序,展示的代码也是基于notebook,使用本文中提供的代码时也尽量使用notebook,不使用notebook的小伙伴请去掉第五行代码!(想了解notebook的小伙伴可以自行百度或者参考我以前的博客Tensorflow学习笔记No.0

模块导入完成后,我们先定位到数据文件所在的目录,并将路径存入data_dir变量中。

1 data_dir = 'C:/Users/18083/Desktop/新建文件夹/opencv/卫星图像识别数据/2_class'

注意,路径要使用自己电脑上'2_class'文件所在的路径,并且路径分隔符要使用'/'而非'\'

获取到文件的路径后我们使用pathlib.Path()方法,将data_dir从字符串变为一个WindowsPath类型的数据,便于后续的子目录读取操作。

1 data_root = pathlib.Path(data_dir)

这是在notebook中的执行结果,我们看到data_root已经是一个WindowPath类型的文件了。

我们可以使用以下代码来便利data_root目录下的所有子目录

1 for item in data_root.iterdir():
2 print(item)
3 #遍历data_root目录下的所有子目录

运行结果如下:

我们可以看到'2_class'目录下所有的子目录,也就是我们即将要进行分类的两类图片的储存位置。

下面我们就着手获取我们所要进行分类的全部图片的路径。

对WindowPath对象使用.glob()方法来遍历目录下特定类型的文件或文件夹。

1 all_image_path = list(data_root.glob('*/*'))
2 #获取所有路径,'*/*'指所有子目录下的所有文件,并转换为list

我们创建一个all_image_path变量来存储所有的图片的路径。

对data_root使用.glob()方法,参数指定为'*/*',‘*'指代该目录下的全部文件,也就是'2_class'文件夹下的'airplane'文件夹和'lake'文件夹,'*/*'就指代了data_root目录的所有子目录中的所有文件,也就是我们要获取的图片文件。并使用list()将其转换为列表便于存储。

随后我们使用列表推导式将其转换为字符串,让它可以作为路径参数从而进行读取文件内容,即图片的数据。

1 all_image_path = [str(path) for path in all_image_path]
2 #使用列表推导式将windowpath转换成字符串

1.2对图像数据使用label进行类别标记

首先导入random模块,对路径进行乱序便于后面将数据分割为训练集和测试集。

乱序是为了防止数据之间产生强依赖关系而影响训练结果。

1 import random
2 random.shuffle(all_image_path)
3 #对数据进行乱序处理
4 image_count = len(all_image_path)
5 #图像总数
6 image_count

对数据进行乱序处理并获得图像总数。

然后我们从子目录中获得标签名。

1 label_name = sorted([item.name for item in data_root.glob('*/')])
2 #从子目录中提取标签名

使用列表推导式将data_root下的所有子目录名字存入列表中,并按照字典序排序。

结果如下:

这样我们便获得了两个类别的名称,也就是存储图片的文件夹的名字。

然后我们使用这个列表构建一个字典,将名字映射为分类的类别编号0,1便于神经网络的分类器进行分类。

1 label_to_indx = dict((name, indx) for indx, name in enumerate(label_name))
2 #enumerate()返回列表的下标和内容
3 #将label编号 并转为字典型

得到一个字典:

下一步,我们使用这个字典和之前得到的路径,将所有的图片分类,编号0或1。

1 all_image_label = [label_to_indx[pathlib.Path(p).parent.name] for p in all_image_path]
2 #从all_iamge_path中读取路径字符串,转换为windowpath对象
3 #调用.parent.name方法获得父亲目录的名字,并用字典映射为对应编号

我们使用path.Path()方法将路径字符串p转换成一个可执行对象,并调用.parent.name方法来获得它的父目录的名字,并使用刚刚建立的字典对其进行编号。

随机取三张图片验证一下all_image_label标签的正确性:

1 import IPython.display as display

导入模块用于通过路径显示图片。

1 for n in range(3):#随机取三张图片
2 image_indx = random.choice(range(image_count))
3 #从所有图片中随机选择一个编号
4 display.display(display.Image(all_image_path[image_indx]))
5 #通过路径播放图片
6 print(indx_to_label[all_image_label[image_indx]])
7 #path和label一一对应,所以可以获得图片的l 通过字典获得图片名
8 print()

结果如下:

标签与图片一致

1.3读取图片数据并创建数据集

经过了前面许许多多复杂步骤的铺垫,我们终于到了读取数据并创建数据集的时刻!

我们先对单一的图片进行读取~

随便找个图片试试水!

1 img_path = all_image_path[0]

通过tf.io.read_file()读取图片数据

1 img_raw = tf.io.read_file(img_path)
2 #读取图片

注意,此时得到的img_raw是图片的16进制编码,而不是我们平时所使用的RGB三通道uint8编码,所以要进行解码。使用tf.image.decode_image_jpeg()进行解码,tf.image中提供了针对不同类型图片的多种解码方式,根据需要自行选择。

1 img_tensor = tf.image.decode_image(img_raw, channels = 3)
2 #解码转换成tensor array

由于我们要将0~255的色彩空间映射到0~1的浮点数,所以要将数据从uint8类型转换为float32。

1 img_tensor = tf.cast(img_tensor, tf.float32)
2 #转换数据类型
3 img_tensor = img_tensor / 255
4 #标准化

这样我们就处理好了一张图片。。。

但。。。我们有整整1400张图片。。。

不可能这样一张张的处理下去,所以我们写个函数来执行这一操作。

1 def load_preprosess_image(path):
2 img_raw = tf.io.read_file(path)
3 img_tensor = tf.image.decode_jpeg(img_raw, channels = 3)
4 img_tensor = tf.image.resize(img_tensor, [256, 256])
5 #resize_with_crop_or_pad填充与裁剪
6 img_tensor = tf.cast(img_tensor, tf.float32)
7 img = img_tensor / 255
8 return img
9 #加载和预处理图片

随后,我们使用tf.data.Dataset中的.from_tensor_slices()方法,将all_image_path进行切片,变成一个dateset类型的数据,并使用函数和map()将路径一一映射为处理好的图片数据。

1 path_ds = tf.data.Dataset.from_tensor_slices(all_image_path)
2 image_dataset = path_ds.map(load_preprosess_image)

此时,all_image_path与all_image_label仍是一一对应的,所以我们对label也进行切片操作转换成dataset类型的数据,并用tf.data.Dataset.zip()方法将其合并成为完整的数据集!(天哪~~!终于建好了!!)

1 label_dataset = tf.data.Dataset.from_tensor_slices(all_image_label)
2 dataset = tf.data.Dataset.zip((image_dataset, label_dataset))

(右侧进度条告诉你事情没有这么简单~)

数据集虽然建好了,但是。。。

还要数据集还要分为训练集和测试集,还要分别对数据进行一些处理。。。

我们首先按照4:1的比例将数据分为训练集和测试集。

1 test_count = int(image_count * 0.2) #280张
2 train_count = image_count - test_count #1120张

分配训练集和测试集的图片数量,然后对数据集进行分割。

使用.skip()获得后280张作为测试集

使用.take()获得前1120张作为训练集

1 train_dataset = dataset.skip(test_count)
2 test_dataset = dataset.take(test_count)

设置一个batch_size神经网络防止一次读取的图片过度导致内存爆炸,这一点非常重要哦。

1 BATCH_SIZE = 32

对训练集进行乱序和重复处理,并按照BATCH_SIZE分配好数据。

对测试集分配好BATCH_SIZE即可。

1 train_dataset = train_dataset.shuffle(train_count).repeat().batch(BATCH_SIZE)
2 test_dataset = test_dataset.batch(BATCH_SIZE)

  到这里,我们就使用tf.data创建了一个自定义的数据集,并且随时可以放到神经网络中进行训练了!(完结撒花*★,°*:.☆( ̄▽ ̄)/$:*.°★*),撒个鬼,还没训练呢 !

2.使用CNN模型进行预测

  上一篇博客中已经讲过了如何构建CNN模型并介绍了需要用到的API,这里不再赘述,不了解的小伙伴可以看看上一篇博客(Tensorflow学习笔记No.4.2)

这里直接上代码!网络模型如下:

大致结构为:每两层卷积设置一层池化层,最后加入全连接层以及分类器进行分类。

 1 model = tf.keras.Sequential()
2 model.add(tf.keras.layers.Conv2D(64, (3, 3), input_shape = (256, 256, 3), activation = 'relu'))
3 model.add(tf.keras.layers.Conv2D(64, (3, 3), activation = 'relu'))
4 model.add(tf.keras.layers.MaxPooling2D())
5 model.add(tf.keras.layers.Conv2D(128, (3, 3), activation = 'relu'))
6 model.add(tf.keras.layers.Conv2D(128, (3, 3), activation = 'relu'))
7 model.add(tf.keras.layers.MaxPooling2D())
8 model.add(tf.keras.layers.Conv2D(256, (3, 3), activation = 'relu'))
9 model.add(tf.keras.layers.Conv2D(256, (3, 3), activation = 'relu'))
10 model.add(tf.keras.layers.MaxPooling2D())
11 model.add(tf.keras.layers.Conv2D(512, (3, 3), activation = 'relu'))
12 model.add(tf.keras.layers.MaxPooling2D())
13 model.add(tf.keras.layers.Conv2D(512, (3, 3), activation = 'relu'))
14 model.add(tf.keras.layers.MaxPooling2D())
15 model.add(tf.keras.layers.Conv2D(1024, (3, 3), activation = 'relu'))
16 model.add(tf.keras.layers.GlobalAveragePooling2D())
17 model.add(tf.keras.layers.Dense(1024, activation = 'relu'))
18 model.add(tf.keras.layers.Dense(256, activation = 'relu'))
19 model.add(tf.keras.layers.Dense(1, activation = 'sigmoid'))

模型详细参数如下:

虽然模型相对复杂,但是我们的数据量很少,使用GPU训练起来还是不慢的。

设置好训练方式,然后开始训练!

 1 model.compile(optimizer = 'adam',
2 loss = 'binary_crossentropy',
3 metrics = ['acc']
4 )
5
6 steps = train_count // BATCH_SIZE
7 valid_steps = test_count // BATCH_SIZE
8
9 history = model.fit(train_dataset, epochs = 30,
10 steps_per_epoch = steps,
11 validation_data = test_dataset,
12 validation_steps = valid_steps
13 )

这里的steps以及valid_steps对应了BATCH_SIZE,也是为了防止数据和内存溢出而加入的限制手段。

训练部分过程如下:

可以看出模型的拟合效果还是非常不错的,在训练过程中测试集上的正确率一度达到过98%。

绘制出训练过程的图像:

1 plt.plot(history.epoch, history.history.get('acc'), label = 'acc')
2 plt.plot(history.epoch, history.history.get('val_acc'), label = 'val_acc')
3 plt.legend()

使用.evaluate()方法验证一下模型准确率。

1 model.evaluate(test_dataset)

在测试集上的准确率也达到了不错的95%

最后我们随便从数据集中随便找几张图片预测一下~

这里我用了测试集中的前三张

1 for i in list(model.predict(test_dataset))[:3]:
2 if i < 0.5:
3 print('airplane')
4 else :
5 print('lake')

运行结果:

把这三张图片放出来看看~ 看一下预测的是否正确~

1 test_img = list(test_dataset)[:1]
2 i, j = test_img[0]
3 plt.imshow(i[0])

1 plt.imshow(i[1])

1 plt.imshow(i[2])

与预测结果一致!

这次我们的模型预测的很成功!

Tensorflow tf.data与卷积神经网络综合实例到这里就结束了~

完结撒花~!o(* ̄▽ ̄*)ブ❀❀❀

Tensorflow学习笔记No.5的更多相关文章

  1. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  2. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  3. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  4. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  5. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  6. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  7. tensorflow学习笔记(4)-学习率

    tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...

  8. tensorflow学习笔记(3)前置数学知识

    tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个   b为4* ...

  9. tensorflow学习笔记(2)-反向传播

    tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...

  10. tensorflow学习笔记(1)-基本语法和前向传播

    tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程.                                       图中的constant是个常量 计 ...

随机推荐

  1. 复杂一点的SQL语句:Oracle DDL和DML

    DDL:对表或者表的属性进行了改变 create:创建表创建用户创建视图 创建表 create table student(id int,score int) ; student后面与括号之间可以有空 ...

  2. 【平台开发】— 2.前端:vue-element-admin

    前端我虽然没怎么写过,但也并不陌生.之前做web自动化,网页结构没少看,html,css,js也都断断续续了解过. 如果从空白开始写,肯定还是需要花不少时间的. 好在网上有了不少成熟的后台系统的前端脚 ...

  3. java初探(1)之秒杀中的rabbitMQ

    rabbitMQ 消息队列,通过一定的通信协议,生产者和消费者在应用程序内传递通信. 主要的作用,提高负载,减耦合. 场景描述:当点击秒杀按钮的那个时刻,有很高的并发量,客户端发出请求之后,会判断库存 ...

  4. java初探(1)之登录补充

    在登录之后,可能服务器是分布式的,因此不能通过一个本地的session来管理登录信息,导致登录的信息不能传递,即在这台服务器上可以得到用户登录信息,但在那台就得不到.因此,需要设置分布式的sessio ...

  5. 14_Web服务器-并发服务器

    1.服务器概述 1.硬件服务器(IBM,HP): 主机 集群 2.软件服务器(HTTPserver Django flask): 网络服务器,在后端提供网络功能逻辑处理数据处理的程序或者架构等 3.服 ...

  6. 跟着兄弟连系统学习Linux-【day10】

    day11-20200610 p36.源码包安装过程 (1)安装前需要准备工作 安装gcc编译器(前两期已经安装) 源码保存位置/usr/local/src 软件安装位置:/usr/local/ (2 ...

  7. Oracle中真正稳妥的求三甲的方法

    坐地铁回家路上忽然想起,三甲排名可能为多个,只取三名岂不荒谬.不信请看下面数据: create table tb_score( id number(4,0) primary key, name nva ...

  8. leetcode刷题-73矩阵置零

    题目 给定一个 m x n 的矩阵,如果一个元素为 0,则将其所在行和列的所有元素都设为 0.请使用原地算法. 示例 1: 输入: [  [1,1,1],  [1,0,1],  [1,1,1]]输出: ...

  9. Django 页面之间传递MySql数据表(Django八)

    之前实现了页面传递多个参数,但没有实现页面间传递一整个数据表 session传递几个参数:https://blog.csdn.net/qq_38175040/article/details/10496 ...

  10. Robotframework自动化5-基础关键字介绍2

    一:时间 1.获取当前时间 Get time   2.获取当月时间    ${yyyy} ${mm} ${day} Get Time year,month,day${time} Catenate SE ...