【POJ 1845】Sumdiv——数论 质因数 + 分治 + 快速幂
(题面来自luogu)
题目描述
输入两个正整数a和b,求a^b的所有因子之和。结果太大,只要输出它对9901的余数。
输入格式
仅一行,为两个正整数a和b(0≤a,b≤50000000)。
输出格式
a^b的因子和对9901的余数。
题中给出的数据很大,暴力明显不可取。顺着题目的思路,我们需要表示出a^b的所有约数之和。考虑把a质因数分解,则原式可以表示为:
那么上式的所有因数就是它的质因数的组合相乘构成的集合。令它们求和,可以发现,和式可以因式分解后表示为
这个式子把所求的答案表示成了若干和式相乘的形式,可以较为方便的进行取模。而前9个质数之积已经超过了给定范围,原式的乘数不会很多,因此把每个和式的答案算出来暴力相乘即可。
观察发现每个和式都是等比数列求和的形式;如果直接套用公式,需要做除法,可以使用费马小定理求出每个除数的逆元来做。因为我觉得逆元很麻烦,这里依照算法进阶的思路,使用分治在log^2的复杂度内求出每个和式的结果。当ci * b为奇数时:
这个式子每进行一次分解,和式的项数就会缩小一半,很适合进行分治计算;式中提出的p的幂可以用快速幂来算出。当ci * b是偶数时,可以提出一个p来变为奇数处理。那么等比数列求和也可以在可承受的复杂度内解决了。
本题的总体思路:质因数分解a^b,把所求因数和因式分解为每个质因数的若干次幂等比求和相乘的形式后,分治递归求出每一个等比数列的和。
代码:
- #include <iostream>
- #include <algorithm>
- #include <cstring>
- #include <cstdio>
- using namespace std;
- const int mod(9901), msqrt(7100), maxn(50000000);
- int A, B;
- int prime[msqrt];
- bool vis[msqrt];
- void euler() { //欧拉筛
- for (int i = 2; i <= msqrt; ++i) {
- if (!vis[i])
- prime[++prime[0]] = i;
- for (int j = 1; j <= prime[0] && prime[j] * i <= msqrt; ++j) {
- vis[prime[j] * i] = true;
- if (i % prime[j] == 0)
- break;
- }
- }
- /* int t = 1;
- for (int i = 1; i <= prime[0]; ++i) { //暴力确定质因数的最多个数
- t *= prime[i];
- if (t > maxn) {
- cout << i << " " << t;
- break;
- }
- }*/
- }
- int fc[20][2], top;
- void Get_factors(int x, const int &B) { //质因数分解
- for (int i = 1; i <= prime[0] && x; ++i)
- if (x % prime[i] == 0) {
- fc[++top][0] = prime[i];
- while (x % prime[i] == 0)
- ++fc[top][1], x /= prime[i];
- fc[top][1] *= B;
- }
- if (x > 1)//A is a big prime
- fc[++top][0] = x, fc[top][1] = B;
- }
- int ans = 1;
- int fpow(int a, int b) {
- int ret = 1;
- while (b) {
- if (b & 1)
- ret = ret * a % mod;
- b >>= 1;
- a = a * a % mod;
- }
- return ret;
- }
- int calc(int a, int b) { //计算各等比数列之和
- if (b == 0) return 1;
- if (b & 1)
- return (1 + fpow(a, (b + 1) >> 1)) * calc(a, b >> 1) % mod;
- return (1 + a * calc(a, b - 1)) % mod;
- }
- int main() {
- cin >> A >> B;
- if (A == 0) { //特判
- putchar('0');
- return 0;
- }
- euler();
- Get_factors(A, B);
- for (int i = 1; i <= top; ++i)
- ans = (ans * calc(fc[i][0] % mod, fc[i][1])) % mod;
- cout << ans;
- return 0;
- }
【POJ 1845】Sumdiv——数论 质因数 + 分治 + 快速幂的更多相关文章
- poj 1845 Sumdiv (数论)
题目链接 题意:求 A^B的所有约数之和对9901取模后的结果. 分析: 看了小优的博客写的. 分析来自 http://blog.csdn.net/lyy289065406/article/detai ...
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- poj 2888 Magic Bracelet(Polya+矩阵快速幂)
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 4990 Accepted: 1610 D ...
- 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)
[BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...
- 【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)
[BZOJ2432][NOI2011]兔农(数论,矩阵快速幂) 题面 BZOJ 题解 这题\(75\)分就是送的,我什么都不想写. 先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后 把它减 ...
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
- POJ 1845 Sumdiv (整数拆分+等比快速求和)
当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...
- poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】
POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...
- POJ 1845 Sumdiv
快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...
随机推荐
- 关于天线长度及LC值的计算
一.天线长度与波长 1.天线最佳长度计算 理论和实践证明,当天线的长度为无线电信号波长的1/4时,天线的发射和接收转换效率最高.因此,天线的长度将根据所发射和接收信号的频率即波长来决定.只要知道对应发 ...
- react-native 常见问题
1.webpack使用babel-loader后编译报错 报错ERROR in ./entry.js Module build failed: SyntaxError: /Users/yixin/De ...
- JDK---00Linux上编译openjdk8
Centos 7 编译自定义jdk8 1. 安装所需的依赖 yum install alsa-lib-devel cups-devel libX* gcc gcc-c++ freetype-devel ...
- ArcPy批量选择指定属性的要素
在GIS数据处理中,选择数据是十分频繁的操作,常用的是"按属性选择"和"按位置选择",这两个功能虽然比较强大,但有时也不能满足实际需求.比如可能时常会遇到这样一 ...
- ant-design-vue中tree增删改
ant-design-vue中tree增删改 1. 使用背景 新项目中使用了ant-design-vue组件库.该组件库完全根基数据双向绑定的模式实现.只有表单组件提供少量的方法.所以,在使用ant- ...
- 【CHOJ】磁力块
题意描述 磁力块 在平面内分布着 \(N\) 个磁力块,同时你的手上也有一块. 你一开始站在给定的坐标上,当磁力块之间满足互相吸引的条件时就可以吸引. 当你拿到新的磁石时你就可以用它来吸引更多的石头, ...
- 没人比我更懂 HashMap :)
哈,标题开个玩笑,0202 年的段子哈. 一.首先看一下 HashMap 的构造函数 /** * Constructs an empty <tt>HashMap</tt> wi ...
- 【Kata Daily 190923】Odder Than the Rest(找出奇数)
题目: Create a method that takes an array/list as an input, and outputs the index at which the sole od ...
- mysql触发
create procedure agex(in addage1 int,in addage2 int)begindeclare curl_stu_id int; declare curl_stu_s ...
- python实现年会抽奖程序
用python来实现一个抽奖程序,供大家参考,具体内容如下 主要功能有 1.从一个csv文件中读入所有员工工号2.将这些工号初始到一个列表中3.用random模块下的choice函数来随机选择列表中的 ...