Python实现kMeans(k均值聚类)

运行环境

  • Pyhton3
  • numpy(科学计算包)
  • matplotlib(画图所需,不画图可不必)

计算过程

st=>start: 开始
e=>end: 结束
op1=>operation: 读入数据
op2=>operation: 随机初始化聚类中心
cond=>condition: 是否聚类是否变化
op3=>operation: 寻找最近的点加入聚类
op4=>operation: 更新聚类中心
op5=>operation: 输出结果 st->op1->op2->op3->op4->cond
cond(yes)->op3
cond(no)->op5->e

输入样例

/* 788points.txt */
15.55,28.65
14.9,27.55
14.45,28.35
14.15,28.8
13.75,28.05
13.35,28.45
13,29.15
13.45,27.5
13.6,26.5
12.8,27.35
12.4,27.85
12.3,28.4
12.2,28.65
13.4,25.1
12.95,25.95

788points.txt完整文件:下载

代码实现

# -*- coding: utf-8 -*-
__author__ = 'Wsine' from numpy import *
import matplotlib.pyplot as plt
import operator
import time INF = 9999999.0 def loadDataSet(fileName, splitChar='\t'):
"""
输入:文件名
输出:数据集
描述:从文件读入数据集
"""
dataSet = []
with open(fileName) as fr:
for line in fr.readlines():
curline = line.strip().split(splitChar)
fltline = list(map(float, curline))
dataSet.append(fltline)
return dataSet def createDataSet():
"""
输出:数据集
描述:生成数据集
"""
dataSet = [[0.0, 2.0],
[0.0, 0.0],
[1.5, 0.0],
[5.0, 0.0],
[5.0, 2.0]]
return dataSet def distEclud(vecA, vecB):
"""
输入:向量A, 向量B
输出:两个向量的欧式距离
"""
return sqrt(sum(power(vecA - vecB, 2))) def randCent(dataSet, k):
"""
输入:数据集, 聚类个数
输出:k个随机质心的矩阵
"""
n = shape(dataSet)[1]
centroids = mat(zeros((k, n)))
for j in range(n):
minJ = min(dataSet[:, j])
rangeJ = float(max(dataSet[:, j]) - minJ)
centroids[:, j] = minJ + rangeJ * random.rand(k, 1)
return centroids def kMeans(dataSet, k, distMeans=distEclud, createCent=randCent):
"""
输入:数据集, 聚类个数, 距离计算函数, 生成随机质心函数
输出:质心矩阵, 簇分配和距离矩阵
"""
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m, 2)))
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m): # 寻找最近的质心
minDist = INF
minIndex = -1
for j in range(k):
distJI = distMeans(centroids[j, :], dataSet[i, :])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i, :] = minIndex, minDist**2
for cent in range(k): # 更新质心的位置
ptsInClust = dataSet[nonzero(clusterAssment[:, 0].A == cent)[0]]
centroids[cent, :] = mean(ptsInClust, axis=0)
return centroids, clusterAssment def plotFeature(dataSet, centroids, clusterAssment):
m = shape(centroids)[0]
fig = plt.figure()
scatterMarkers = ['s', 'o', '^', '8', 'p', 'd', 'v', 'h', '>', '<']
scatterColors = ['blue', 'green', 'yellow', 'purple', 'orange', 'black', 'brown']
ax = fig.add_subplot(111)
for i in range(m):
ptsInCurCluster = dataSet[nonzero(clusterAssment[:, 0].A == i)[0], :]
markerStyle = scatterMarkers[i % len(scatterMarkers)]
colorSytle = scatterColors[i % len(scatterColors)]
ax.scatter(ptsInCurCluster[:, 0].flatten().A[0], ptsInCurCluster[:, 1].flatten().A[0], marker=markerStyle, c=colorSytle, s=90)
ax.scatter(centroids[:, 0].flatten().A[0], centroids[:, 1].flatten().A[0], marker='+', c='red', s=300) def main():
#dataSet = loadDataSet('testSet2.txt')
dataSet = loadDataSet('788points.txt', splitChar=',')
#dataSet = createDataSet()
dataSet = mat(dataSet)
resultCentroids, clustAssing = kMeans(dataSet, 6)
print('*******************')
print(resultCentroids)
print('*******************')
plotFeature(dataSet, resultCentroids, clustAssing) if __name__ == '__main__':
start = time.clock()
main()
end = time.clock()
print('finish all in %s' % str(end - start))
plt.show()

输出样例

*******************
[[ 33.14278846 8.79375 ]
[ 32.69453125 22.13789062]
[ 9.25928144 22.98113772]
[ 18.8620283 7.11037736]
[ 9.50503876 7.55620155]
[ 21.16041667 22.89895833]]
*******************
finish all in 5.454627327134057

Python实现kMeans(k均值聚类)的更多相关文章

  1. 机器学习之路:python k均值聚类 KMeans 手写数字

    python3 学习使用api 使用了网上的数据集,我把他下载到了本地 可以到我的git中下载数据集: https://github.com/linyi0604/MachineLearning 代码: ...

  2. 机器学习算法与Python实践之(六)二分k均值聚类

    http://blog.csdn.net/zouxy09/article/details/17590137 机器学习算法与Python实践之(六)二分k均值聚类 zouxy09@qq.com http ...

  3. 【转】算法杂货铺——k均值聚类(K-means)

    k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...

  4. 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例

    k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...

  5. 第十篇:K均值聚类(KMeans)

    前言 本文讲解如何使用R语言进行 KMeans 均值聚类分析,并以一个关于人口出生率死亡率的实例演示具体分析步骤. 聚类分析总体流程 1. 载入并了解数据集:2. 调用聚类函数进行聚类:3. 查看聚类 ...

  6. 100天搞定机器学习|day44 k均值聚类数学推导与python实现

    [如何正确使用「K均值聚类」? 1.k均值聚类模型 给定样本,每个样本都是m为特征向量,模型目标是将n个样本分到k个不停的类或簇中,每个样本到其所属类的中心的距离最小,每个样本只能属于一个类.用C表示 ...

  7. k均值聚类算法原理和(TensorFlow)实现

    顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也 ...

  8. 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测

    据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...

  9. 机器学习理论与实战(十)K均值聚类和二分K均值聚类

    接下来就要说下无监督机器学习方法,所谓无监督机器学习前面也说过,就是没有标签的情况,对样本数据进行聚类分析.关联性分析等.主要包括K均值聚类(K-means clustering)和关联分析,这两大类 ...

随机推荐

  1. 使用FFmpeg解码H264-2016.01.14

    使用jni方式调用FFmepg项目中接口,对H264裸码进行解码. 该Demo主要实现从文件中读取H264编码的视频流,然后使用FFmpeg解码,将解码后的码流保存到文件. 工程目录结构如图所示: A ...

  2. 配置Android环境遇到的问题及解决办法

    配置Android环境遇到的问题及解决办法: 1 环境安装地址 http://pan.baidu.com/s/1jGzNzyI 2 其他: 2.1 安装 2.1.1 安装JDK,JRE 成功安装之后, ...

  3. js控制ul的显示隐藏,对象的有效范围

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. javascript中for/in循环及使用技巧

    JavaScript 支持不同类型的循环: for - 循环代码块一定的次数 for/in - 循环遍历对象的属性 while - 当指定的条件为 true 时循环指定的代码块 do/while - ...

  5. 软件工程 speedsnail 冲刺6

    2015-5-10 完成任务:学习了黑马android教学视频13.14.15集,记分功能: 遇到问题: 问题1 android native method not found 解决1 没有解决 明日 ...

  6. HTML表单的问题

    1. 表单一定要放在<form>标签里面,就会有错误. 像<textarea>单独放的时候,单击的时候不会出现在开始位置,而是在任意单击的地方开始.  

  7. Dev的DocumentManager 相关问题

    1.改变DocumentManager包含的窗体的排列方式 if (this.documentManager1.View.Type != ViewType.NativeMdi) { this.docu ...

  8. [译]Cassandra的数据读写与压缩

    本文翻译主要来自Datastax的cassandra1.2文档.http://www.datastax.com/documentation/cassandra/1.2/index.html.此外还有一 ...

  9. 如何批量转换 WordPress 文章分类

    可能建博之初,分类设置过于详细,后来想重新整理并删除一些分类项目,比如删除分类A,并将其中的所有文章划归到分类B中,手动修改文章的分类过于麻烦,有木有什么方法可以批量移动文章到另一个分类中呢? 网上闲 ...

  10. 重拾C,一天一点点_11

    命令行参数 在支持C语言的环境中,可以在程序开始执行时将命令行参数传递给程序. 调用主函数main时,它带有两个参数,第一个参数(argc,用于参数计数)的值表示运行程序时命令行参数的数目:第二个参数 ...