转自:http://www.hongliangjie.com/2010/01/04/notes-on-probabilistic-latent-semantic-analysis-plsa/

I highly recommend you read the more detailed version of http://arxiv.org/abs/1212.3900

Formulation of PLSA

There are two ways to formulate PLSA. They are equivalent but may lead to different inference process.

Let’s see why these two equations are equivalent by using Bayes rule.

The whole data set is generated as (we assume that all words are generated independently):

The Log-likelihood of the whole data set for (1) and (2) are:

EM

For or , the optimization is hard due to the log of sum. Therefore, an algorithm called Expectation-Maximization is usually employed. Before we introduce anything about EM, please note that EM is only guarantee to find a local optimum (although it may be a global one).

First, we see how EM works in general. As we shown for PLSA, we usually want to estimate the likelihood of data, namely , given the paramter . The easiest way is to obtain a maximum likelihood estimator by maximizing . However, sometimes, we also want to include some hidden variables which are usually useful for our task. Therefore, what we really want to maximize is , the complete likelihood. Now, our attention becomes to this complete likelihood. Again, directly maximizing this likelihood is usually difficult. What we would like to show here is to obtain a lower bound of the likelihood and maximize this lower bound.

We need Jensen’s Inequality to help us obtain this lower bound. For any convex function , Jensen’s Inequality states that :

Thus, it is not difficult to show that :

and for concave functions (like logarithm), it is :

Back to our complete likelihood, we can obtain the following conclusion by using concave version of Jensen’s Inequality :

Therefore, we obtained a lower bound of complete likelihood and we want to maximize it as tight as possible. EM is an algorithm that maximize this lower bound through a iterative fashion. Usually, EM first would fix current value and maximize and then use the new value to obtain a new guess on , which is essentially a two stage maximization process. The first step can be shown as follows:

The first term is the same for all . Therefore, in order to maximize the whole equation, we need to minimize KL divergence between and , which eventually leads to the optimum solution of . So, usually for E-step, we use current guess of to calculate the posterior distribution of hidden variable as the new update score. For M-step, it is problem-dependent. We will see how to do that in later discussions.

Another explanation of EM is in terms of optimizing a so-called Q function. We devise the data generation process as . Therefore, the complete likelihood is modified as:

Think about how to maximize . Instead of directly maximizing it, we can iteratively maximize as :

Now take the expectation of this equation, we have:

The last term is always non-negative since it can be recognized as the KL-divergence of and . Therefore, we obtain a lower bound of Likelihood :

The last two terms can be treated as constants as they do not contain the variable , so the lower bound is essentially the first term, which is also sometimes called as “Q-function”.

EM of Formulation 1

In case of Formulation 1, let us introduce hidden variables to indicate which hidden topic is selected to generated in (). Therefore, the complete likelihood can be formulated as :

From the equation above, we can write our Q-function for the complete likelihood :

For E-step, simply using Bayes Rule, we can obtain:

For M-step, we need to maximize Q-function, which needs to be incorporated with other constraints:

and take all derivatives:

Therefore, we can easily obtain:

EM of Formulation 2

Use similar method to introduce hidden variables to indicate which is selected to generated and and we can have the following complete likelihood :

Therefore, the Q-function would be :

For E-step, again, simply using Bayes Rule, we can obtain:

For M-step, we maximize the constraint version of Q-function:

and take all derivatives:

Therefore, we can easily obtain:

Notes on Probabilistic Latent Semantic Analysis (PLSA)的更多相关文章

  1. NLP —— 图模型(三)pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)模型

    LSA(Latent semantic analysis,隐性语义分析).pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)和 LDA(Late ...

  2. 主题模型之概率潜在语义分析(Probabilistic Latent Semantic Analysis)

    上一篇总结了潜在语义分析(Latent Semantic Analysis, LSA),LSA主要使用了线性代数中奇异值分解的方法,但是并没有严格的概率推导,由于文本文档的维度往往很高,如果在主题聚类 ...

  3. Latent semantic analysis note(LSA)

    1 LSA Introduction LSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott Deerwes ...

  4. 主题模型之潜在语义分析(Latent Semantic Analysis)

    主题模型(Topic Models)是一套试图在大量文档中发现潜在主题结构的机器学习模型,主题模型通过分析文本中的词来发现文档中的主题.主题之间的联系方式和主题的发展.通过主题模型可以使我们组织和总结 ...

  5. Latent Semantic Analysis (LSA) Tutorial 潜语义分析LSA介绍 一

    Latent Semantic Analysis (LSA) Tutorial 译:http://www.puffinwarellc.com/index.php/news-and-articles/a ...

  6. 潜语义分析(Latent Semantic Analysis)

    LSI(Latent semantic indexing, 潜语义索引)和LSA(Latent semantic analysis,潜语义分析)这两个名字其实是一回事.我们这里称为LSA. LSA源自 ...

  7. 潜在语义分析Latent semantic analysis note(LSA)原理及代码

    文章引用:http://blog.sina.com.cn/s/blog_62a9902f0101cjl3.html Latent Semantic Analysis (LSA)也被称为Latent S ...

  8. 海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis

    http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  9. Latent Semantic Analysis(LSA/ LSI)原理简介

    LSA的工作原理: How Latent Semantic Analysis Works LSA被广泛用于文献检索,文本分类,垃圾邮件过滤,语言识别,模式检索以及文章评估自动化等场景. LSA其中一个 ...

随机推荐

  1. Linux管道的实现机制

    7.1.1 Linux管道的实现机制 在Linux中,管道是一种使用非常频繁的通信机制.从本质上说,管道也是一种文件,但它又和一般的文件有所不同,管道可以克服使用文件进行通信的两个问题,具体表现为: ...

  2. [转载] 问题解决:FFmpeg视频编解码库,无法解析的外部信号

    在编译FFmpeg相关项目时,可能会出现: error LNK2019: 无法解析的外部符号 "int __cdecl avpicture_fill(struct AVPicture *,u ...

  3. 标准IO库函数复习

    打开文件,打开文件一定要成对写,养成好习惯很重要.比如 fopen()fclose<ol> <li>fopen()</li> <pre lang=" ...

  4. window 7 下一台cp 两个mysql 配置主从

    环境 : 个人 pc windows7 一台 ; 使用 : 官方下载: mysql-noinstall-5.5.11-win32.zip 1. 解压 成2个 (文件夹) mysql_master (主 ...

  5. Codeforces Round #217 (Div. 2) c题

    C. Mittens time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  6. [Everyday Mathematic]20150212 求 $(\cos x+2)(\sin x+1)$ 的最大值

    设 $$\bex t=\tan \frac{x}{2}, \eex$$ 则 $$\bex \cos x=\frac{1-t^2}{1+t^2},\quad \sin x=\frac{2t}{1+t^2 ...

  7. 自定义View实现图片的绘制、旋转、缩放

    1.图片 把一张JPG图片改名为image.jpg,然后拷贝到项目的res-drawable中. 2.activity_main.xml <LinearLayout xmlns:android= ...

  8. 二级指针的作用及用途 .xml

    pre{ line-height:1; color:#9f1d66; background-color:#e1e1e1; font-size:16px;}.sysFunc{color:#5d57ff; ...

  9. CSS概述<选择器总结>

    概述:CSS是指层叠样式表,他是定义如何显示HTML元素,样式表通常存储在样式表中,通常存储在.css文件中,下面对css的选择器进行总结,便大家夯实基础! 1 语法规范: 每个样式规则有两个部分:选 ...

  10. JQuery中的事件以及动画

    .bind事件 <script src="script/jquery-1.7.1.min.js"></script> <script> $(fu ...