题目:

Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

Examples:

[2,3,4] , the median is 3

[2,3], the median is (2 + 3) / 2 = 2.5

Design a data structure that supports the following two operations:

  • void addNum(int num) - Add a integer number from the data stream to the data structure.
  • double findMedian() - Return the median of all elements so far.

For example:

add(1)
add(2)
findMedian() -> 1.5
add(3)
findMedian() -> 2

链接: http://leetcode.com/problems/find-median-from-data-stream/

题解:

在Data stream中找到median。这道题是Heap的经典应用,需要同时维护一个最大堆和一个最小堆, 最大堆和最小堆的size <= 当前数字count / 2。在学习heap数据结构的时候一般都会讲到这一题,很经典。

Time Complexity: addNum - O(logn)  , findMedian - O(1),  Space Complexity - O(n)

class MedianFinder {
private PriorityQueue<Integer> maxOrientedHeap;
private PriorityQueue<Integer> minOrientedHeap; public MedianFinder() {
this.minOrientedHeap = new PriorityQueue<Integer>();
this.maxOrientedHeap = new PriorityQueue<Integer>(10, new Comparator<Integer>() {
public int compare(Integer i1, Integer i2) {
return i2 - i1;
}
});
}
// Adds a number into the data structure.
public void addNum(int num) {
maxOrientedHeap.add(num); // O(logn)
minOrientedHeap.add(maxOrientedHeap.poll()); // O(logn)
if(maxOrientedHeap.size() < minOrientedHeap.size()) {
maxOrientedHeap.add(minOrientedHeap.poll()); //O(logn)
}
} // Returns the median of current data stream
public double findMedian() { // O(1)
if(maxOrientedHeap.size() == minOrientedHeap.size())
return (maxOrientedHeap.peek() + minOrientedHeap.peek()) / 2.0;
else
return maxOrientedHeap.peek();
}
}; // Your MedianFinder object will be instantiated and called as such:
// MedianFinder mf = new MedianFinder();
// mf.addNum(1);
// mf.findMedian();

二刷:

依然使用了两个PriorityQueue,一个maxPQ,一个minPQ。最小堆中存的是较大的一半数据,最大堆中存的是较小的一半数据。当传入数字计数为奇数是,我们直接返回minPQ.peek(), 否则我们返回 (maxPQ.peek() + minPQ.peek()) / 2.0。 这样做速度不是很理想,也许是maxPQ的lambda表达式构建出的comparator没有得到优化,换成普通的comparator速度至少快一倍。也可以用Collections.reverseOrder()来作为maxPQ的comparator。

见到有些朋友用了构建BST来做,这样减少了几次O(logn)的操作,速度会更快,以后在研究。

Java:

Min and Max Heap

Time Complexity: addNum - O(logn)  , findMedian - O(1),  Space Complexity - O(n)

class MedianFinder {
Queue<Integer> minPQ = new PriorityQueue<>();
Queue<Integer> maxPQ = new PriorityQueue<>(10, (Integer i1, Integer i2) -> i2 - i1);
// Adds a number into the data structure.
public void addNum(int num) {
minPQ.offer(num);
maxPQ.offer(minPQ.poll());
if (minPQ.size() < maxPQ.size()) minPQ.offer(maxPQ.poll());
} // Returns the median of current data stream
public double findMedian() {
if (minPQ.size() == maxPQ.size()) return (minPQ.peek() + maxPQ.peek()) / 2.0;
return minPQ.peek();
}
}; // Your MedianFinder object will be instantiated and called as such:
// MedianFinder mf = new MedianFinder();
// mf.addNum(1);
// mf.findMedian();

Reference:

https://leetcode.com/discuss/65107/share-my-java-solution-logn-to-insert-o-1-to-query

https://leetcode.com/discuss/64850/short-simple-java-c-python-o-log-n-o-1

https://leetcode.com/discuss/64811/easy-to-understand-double-heap-solution-in-java

https://leetcode.com/discuss/64910/very-short-o-log-n-o-1

https://leetcode.com/discuss/64842/32ms-easy-to-understand-java-solution

https://leetcode.com/discuss/68290/simple-java-solution-with-2-heaps-and-explanation

https://leetcode.com/discuss/64852/java-python-two-heap-solution-o-log-n-add-o-1-find

https://leetcode.com/discuss/94126/18ms-beats-100%25-java-solution-with-bst

295. Find Median from Data Stream的更多相关文章

  1. [LeetCode] 295. Find Median from Data Stream ☆☆☆☆☆(数据流中获取中位数)

    295. Find Median from Data Stream&数据流中的中位数 295. Find Median from Data Stream https://leetcode.co ...

  2. 剑指offer 最小的k个数 、 leetcode 215. Kth Largest Element in an Array 、295. Find Median from Data Stream(剑指 数据流中位数)

    注意multiset的一个bug: multiset带一个参数的erase函数原型有两种.一是传递一个元素值,如上面例子代码中,这时候删除的是集合中所有值等于输入值的元素,并且返回删除的元素个数:另外 ...

  3. leetcode@ [295]Find Median from Data Stream

    https://leetcode.com/problems/find-median-from-data-stream/ Median is the middle value in an ordered ...

  4. [leetcode]295. Find Median from Data Stream数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  5. [LeetCode] 295. Find Median from Data Stream 找出数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  6. [LC] 295. Find Median from Data Stream

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  7. 【LeetCode】295. Find Median from Data Stream 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 大根堆+小根堆 日期 题目地址:https://le ...

  8. 295 Find Median from Data Stream 数据流的中位数

    中位数是排序后列表的中间值.如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值.示例:[2,3,4] , 中位数是 3[2,3], 中位数是 (2 + 3) / 2 = 2.5设计一个 ...

  9. LeetCode——295. Find Median from Data Stream

    一.题目链接: https://leetcode.com/problems/find-median-from-data-stream 二.题目大意: 给定一段数据流,要求求出数据流中的中位数,其中数据 ...

随机推荐

  1. mysql死锁示例

    MySQL有三种锁的级别:页级.表级.行级. MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking):BDB存储引擎采用的是页面锁(page-level locki ...

  2. 寻找idea...

    域名:tianhuangdilao.com 天荒地老 现在闲置,寻求好的idea...

  3. “我爱淘”冲刺阶段Scrum站立会议1

    昨天是我们项目冲刺阶段的第一天,站立会议的内容如下: 1.昨天完成了项目中的第一个界面--“精选”界面:完成了一点Java文件的编写: 2.今天的任务就是完成第一个Activity的编写:将布局文件和 ...

  4. Hough 变换

    作用 霍夫变换是常用的图像变换,用于在图像中寻找直线.圆.椭圆等这类具有相同特征的几何图形.在许多应用场合中,都需要实现对特定形状物体的快速定位,而霍夫变换由于其对方向和噪声不敏感,因此在这类应用中发 ...

  5. Mysql数据库表排序规则不一致导致联表查询,索引不起作用问题

    Mysql数据库表排序规则不一致导致联表查询,索引不起作用问题 表更描述: 将mysql数据库中的worktask表添加ishaspic字段. 具体操作:(1)数据库worktask表新添是否有图片字 ...

  6. 读《我是一只IT小小鸟》有感

          时间太瘦,指缝太宽.一晃一学期过去了,有些迷茫,但也相信未来是美好的.当我看完<我是一只IT小小鸟>这本书之后,心中更是感慨万千.每一个励志的故事都值得欣赏.深思,甚至我还幻想 ...

  7. 关于myeclipse代码提示的一些问题

    默认是  .xxx  输入点提示,要写注释 @xxx的时候怎么输入@后面有代码提示呢? Auto activation delay 是代码提示出现的速度  下面一行是出现代码提示的条件 我们在.后面加 ...

  8. 设计模式之适配器模式(Adapter)

    适配器模式原理:适配器模式属于结构型模式,主要作用是完成功能的转换, 1.通过一个类继承目标类. 2.需要适配的类 3.适配器 代码如下: #include <iostream> usin ...

  9. zoj 2760 How Many Shortest Path 最大流

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...

  10. matrix_last_acm_4

    2013 ACM-ICPC吉林通化全国邀请赛 A http://acm.hust.edu.cn/vjudge/contest/view.action?cid=97654#problem/A 题意:输入 ...