题目:

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).


The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10

Note:

  1. The matrix is only modifiable by the update function.
  2. You may assume the number of calls to update and sumRegion function is distributed evenly.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

链接: http://leetcode.com/problems/range-sum-query-2d-mutable/

题解:

二维Range Sum Query mutable,我了个去,第一次Leetcode写了超过140行代码...足够臭长了吧,但是居然能ac,还是很高兴 -____-!! 原理是要构建一个2D Segment Tree或者 2D Fenwick Tree。由于上一题是先做的Segment Tree,这回也先写2D Segment Tree。构建2D Segment Tree依然是使用Divide and Conquer,我们要把整个平面分成4个部分,所以2D Segment Tree也是一个Quad Tree,每个节点有四个子节点,NW, NE, SW, SE, 节点的sum是四个子节点的sum。这样我们就可以用与1D Segment Tree类似的方法来写rangeSum以及update。要注意rangeSum时的判断,有好几种情况,比较复杂。

2D Segment Tree: Time Complexity - O(mn) build,O(logmn) update, O(logmn) rangeSum , Space Complexity - O(mn)  复杂度算得不是很清楚,很可能不正确,二刷再继续改正。

public class NumMatrix {
private class SegmentTreeNode2D {
public int tlRow;
public int tlCol;
public int brRow;
public int brCol;
public int sum;
public SegmentTreeNode2D nw, ne, sw, se; public SegmentTreeNode2D(int tlRow, int tlCol, int brRow, int brCol) {
this.tlRow = tlRow;
this.tlCol = tlCol;
this.brRow = brRow;
this.brCol = brCol;
this.sum = 0;
}
} public SegmentTreeNode2D root; public NumMatrix(int[][] matrix) {
if(matrix == null || matrix.length == 0) {
return;
}
root = buildTree(matrix, 0, 0, matrix.length - 1, matrix[0].length - 1);
} public void update(int row, int col, int val) {
update(root, row, col, val);
} private void update(SegmentTreeNode2D node, int row, int col, int val) {
if(node.tlRow == row && node.brRow == row && node.tlCol == col && node.brCol == col) {
node.sum = val;
return;
}
int rowMid = node.tlRow + (node.brRow - node.tlRow) / 2;
int colMid = node.tlCol + (node.brCol - node.tlCol) / 2;
if(row <= rowMid) {
if(col <= colMid) {
update(node.nw, row, col, val);
} else {
update(node.ne, row, col, val);
}
} else {
if(col <= colMid) {
update(node.sw, row, col, val);
} else {
update(node.se, row, col, val);
}
} node.sum = 0;
if(node.nw != null) {
node.sum += node.nw.sum;
}
if(node.ne != null) {
node.sum += node.ne.sum;
}
if(node.sw != null) {
node.sum += node.sw.sum;
}
if(node.se != null) {
node.sum += node.se.sum;
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
return sumRegion(root, row1, col1, row2, col2);
} private int sumRegion(SegmentTreeNode2D node, int tlRow, int tlCol, int brRow, int brCol) {
if(node.tlRow == tlRow && node.tlCol == tlCol && node.brRow == brRow && node.brCol == brCol) {
return node.sum;
}
int rowMid = node.tlRow + (node.brRow - node.tlRow) / 2;
int colMid = node.tlCol + (node.brCol - node.tlCol) / 2;
if(brRow <= rowMid) { // top-half plane
if(brCol <= colMid) { // north-west quadrant
return sumRegion(node.nw, tlRow, tlCol, brRow, brCol);
} else if(tlCol > colMid) { // north-east quadrant
return sumRegion(node.ne, tlRow, tlCol, brRow, brCol);
} else { // intersection between nw and ne
return sumRegion(node.nw, tlRow, tlCol, brRow, colMid) + sumRegion(node.ne, tlRow, colMid + 1, brRow, brCol);
}
} else if(tlRow > rowMid) { // bot-half plane
if(brCol <= colMid) { // south-west quadrant
return sumRegion(node.sw, tlRow, tlCol, brRow, brCol);
} else if(tlCol > colMid) { // south-east quadrant
return sumRegion(node.se, tlRow, tlCol, brRow, brCol);
} else { //intersection between sw and sw
return sumRegion(node.sw, tlRow, tlCol, brRow, colMid) + sumRegion(node.se, tlRow, colMid + 1, brRow, brCol);
}
} else { // full-plane intersection
if(brCol <= colMid) { // left half plane
return sumRegion(node.nw, tlRow, tlCol, rowMid, brCol) + sumRegion(node.sw, rowMid + 1, tlCol, brRow, brCol) ;
} else if(tlCol > colMid) { // right half plane
return sumRegion(node.ne, tlRow, tlCol, rowMid, brCol) + sumRegion(node.se, rowMid + 1, tlCol, brRow, brCol) ;
} else { // full-plane intersection
return sumRegion(node.nw, tlRow, tlCol, rowMid, colMid)
+ sumRegion(node.ne, tlRow, colMid + 1, rowMid, brCol)
+ sumRegion(node.sw, rowMid + 1, tlCol, brRow, colMid)
+ sumRegion(node.se, rowMid + 1, colMid + 1, brRow, brCol);
}
}
} private SegmentTreeNode2D buildTree(int[][] matrix, int tlRow, int tlCol, int brRow, int brCol) {
if(tlRow > brRow || tlCol > brCol) {
return null;
} else {
SegmentTreeNode2D node = new SegmentTreeNode2D(tlRow, tlCol, brRow, brCol);
if(tlRow == brRow && tlCol == brCol) {
node.sum = matrix[tlRow][tlCol];
} else {
int rowMid = tlRow + (brRow - tlRow) / 2;
int colMid = tlCol + (brCol - tlCol) / 2;
node.nw = buildTree(matrix, tlRow, tlCol, rowMid, colMid);
node.ne = buildTree(matrix, tlRow, colMid + 1, rowMid, brCol);
node.sw = buildTree(matrix, rowMid + 1, tlCol, brRow, colMid);
node.se = buildTree(matrix, rowMid + 1, colMid + 1, brRow, brCol);
node.sum = 0;
if(node.nw != null) {
node.sum += node.nw.sum;
}
if(node.ne != null) {
node.sum += node.ne.sum;
}
if(node.sw != null) {
node.sum += node.sw.sum;
}
if(node.se != null) {
node.sum += node.se.sum;
}
}
return node;
}
}
} // Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.update(1, 1, 10);
// numMatrix.sumRegion(1, 2, 3, 4);

2D Fenwick Tree:  -- 看了Quora一个acm大神的post以后,我决定还是要使用2D Fenwick Tree来做这题。 “https://www.quora.com/How-does-a-2D-segment-tree-work” ,代码肯定比Segment Tree简洁,而且速度也会更快。基本方法和1D非常类似,这种方法甚至可以简单地扩展到更高维度。

Time Complexity - O(mnlogm * logn) build,  O(logmn) update, O(logmn) rangeSum, Space Complexity - O(mn)

public class NumMatrix {
private int BIT2D[][];
private int matrix[][]; public NumMatrix(int[][] matrix) {
if(matrix == null || matrix.length == 0) {
return;
}
BIT2D = new int[matrix.length + 1][matrix[0].length + 1];
this.matrix = new int[matrix.length][matrix[0].length];
for(int i = 0; i < matrix.length; i++) {
for(int j = 0; j < matrix[0].length; j++) {
update(i, j, matrix[i][j]);
}
}
} public void update(int row, int col, int val) {
int delta = val - matrix[row][col];
matrix[row][col] = val;
for(int i = row + 1; i < BIT2D.length; i += i & (-i)) { //also equals to i |= i + 1
for(int j = col + 1; j < BIT2D[0].length; j += j & (-j)) {
BIT2D[i][j] += delta;
}
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
return getSum(row2 + 1, col2 + 1) - getSum(row1, col2 + 1) - getSum(row2 + 1, col1) + getSum(row1, col1);
} private int getSum(int row, int col) {
int sum = 0;
for(int i = row; i > 0; i -= i & (-i)) {
for(int j = col; j > 0; j -= j & (-j)) {
sum += BIT2D[i][j];
}
}
return sum;
}
} // Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.update(1, 1, 10);
// numMatrix.sumRegion(1, 2, 3, 4);

Reference:

https://stackoverflow.com/questions/25121878/2d-segment-quad-tree-explanation-with-c/25122078#25122078

https://sites.google.com/site/indy256/algo/fenwick_tree_2d
http://www.hawstein.com/posts/binary-indexed-trees.html
https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/
http://www.wohenniu.com/thread-872-1-1.html
http://bookshadow.com/leetcode/
http://cs.nyu.edu/courses/spring14/CSCI-UA.0480-004/
https://web.stanford.edu/class/cs97si/03-data-structures.pdf
http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-algorithm-in-plain-english

https://leetcode.com/discuss/71025/segmentation-tree-736ms-indexed-tree-492ms-based-solutions

https://leetcode.com/discuss/70992/c-solution-using-2d-binary-index-tree-easy-to-understand

https://leetcode.com/discuss/72685/share-my-java-2-d-binary-indexed-tree-solution

https://leetcode.com/discuss/71046/java-2d-binary-indexed-tree-solution-80ms

https://leetcode.com/discuss/70948/15ms-easy-to-understand-java-solution

https://leetcode.com/discuss/71169/java-2d-binary-indexed-tree-solution-clean-and-short-17ms

https://leetcode.com/problems/range-sum-query-2d-mutable/

http://www.lxway.com/5152462.htm

https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/

308. Range Sum Query 2D - Mutable的更多相关文章

  1. LeetCode 308. Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  2. Range Sum Query 2D - Mutable & Immutable

    Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...

  3. [Locked] Range Sum Query 2D - Mutable

    Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...

  4. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  5. Leetcode: Range Sum Query 2D - Mutable && Summary: Binary Indexed Tree

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  6. LeetCode Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  7. [Swift]LeetCode308. 二维区域和检索 - 可变 $ Range Sum Query 2D - Mutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  9. [LeetCode] Range Sum Query - Immutable & Range Sum Query 2D - Immutable

    Range Sum Query - Immutable Given an integer array nums, find the sum of the elements between indice ...

随机推荐

  1. 20145120 《Java程序设计》第9周学习总结

    20145120 <Java程序设计>第9周学习总结 教材学习内容总结 JDBC希望程序能操作所有数据库 操作JDBC驱动有4种类型: JDBC-ODBC Bridge Driver Na ...

  2. 互联网产品设计常用文档类型-BRD、MRD、PRD、FSD (

    BRD Business Requirements Document,商业需求文档.这是产品声明周期中最早的问的文档,再早就应该是脑中的构思了,其内容涉及市场分析,销售策略,盈利预测等,通常是和老大们 ...

  3. Careercup - Microsoft面试题 - 5204967652589568

    2014-05-11 23:57 题目链接 原题: identical balls. one ball measurements ........ dead easy. 题目:9个看起来一样的球,其中 ...

  4. Google Guava学习笔记——基础工具类Splitter的使用

    另一项经常对字符串的操作就是根据指定的分隔符对字符串进行分隔.我们基本上会使用String.split方法: String testString = "Monday,Tuesday,,Thu ...

  5. Android 动态Tab分页效果实现

    当前项目使用的是TabHost+Activity进行分页,目前要做个报表功能,需要在一个Tab页内进行Activity的切换.比方说我有4个Tab页分别为Tab1,Tab2,Tab3,Tab4,现在的 ...

  6. JS 学习笔记--JS中的事件对象基础

    事件:JavaScript中的事件是由访问web页面用户的一系列操作引起的,比如点击鼠标,键盘按键等.当用户执行某些操作的时候再去执行一些代码. 事件模型:内联模型.脚本模型.DOM2模型 内联模型: ...

  7. 引入代码后,在@override报错

    最近引入了spring的源码到工程里,发现凡是@override修饰的代码都会报错 这里有java历史的原因 5及以前不支持@override的注解,所以,此时,你最需要知道的是当前项目djk的编译版 ...

  8. 2012 Asia Chengdu Regional Contest

    Browsing History http://acm.hdu.edu.cn/showproblem.php?pid=4464 签到 #include<cstdio> #include&l ...

  9. CoreText 使用教程

    [iOS开发] CoreText 使用教程:以创建一个简单的杂志应用为例抢沙发 分类:iPhone开发 标签:CoreText.iOS.iOS开发.iOS开发教程.杂志应用 BBS.CHINAAPP. ...

  10. 浏览器解析HTML文档的资源并下载

    <img />,<style>这些资源是并行请求与加载. <script>脚本是同步请求与加载,阻塞加载.加载完成并执行后再继续解析HTML. 动态<scri ...