题目:

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).


The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10

Note:

  1. The matrix is only modifiable by the update function.
  2. You may assume the number of calls to update and sumRegion function is distributed evenly.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

链接: http://leetcode.com/problems/range-sum-query-2d-mutable/

题解:

二维Range Sum Query mutable,我了个去,第一次Leetcode写了超过140行代码...足够臭长了吧,但是居然能ac,还是很高兴 -____-!! 原理是要构建一个2D Segment Tree或者 2D Fenwick Tree。由于上一题是先做的Segment Tree,这回也先写2D Segment Tree。构建2D Segment Tree依然是使用Divide and Conquer,我们要把整个平面分成4个部分,所以2D Segment Tree也是一个Quad Tree,每个节点有四个子节点,NW, NE, SW, SE, 节点的sum是四个子节点的sum。这样我们就可以用与1D Segment Tree类似的方法来写rangeSum以及update。要注意rangeSum时的判断,有好几种情况,比较复杂。

2D Segment Tree: Time Complexity - O(mn) build,O(logmn) update, O(logmn) rangeSum , Space Complexity - O(mn)  复杂度算得不是很清楚,很可能不正确,二刷再继续改正。

public class NumMatrix {
private class SegmentTreeNode2D {
public int tlRow;
public int tlCol;
public int brRow;
public int brCol;
public int sum;
public SegmentTreeNode2D nw, ne, sw, se; public SegmentTreeNode2D(int tlRow, int tlCol, int brRow, int brCol) {
this.tlRow = tlRow;
this.tlCol = tlCol;
this.brRow = brRow;
this.brCol = brCol;
this.sum = 0;
}
} public SegmentTreeNode2D root; public NumMatrix(int[][] matrix) {
if(matrix == null || matrix.length == 0) {
return;
}
root = buildTree(matrix, 0, 0, matrix.length - 1, matrix[0].length - 1);
} public void update(int row, int col, int val) {
update(root, row, col, val);
} private void update(SegmentTreeNode2D node, int row, int col, int val) {
if(node.tlRow == row && node.brRow == row && node.tlCol == col && node.brCol == col) {
node.sum = val;
return;
}
int rowMid = node.tlRow + (node.brRow - node.tlRow) / 2;
int colMid = node.tlCol + (node.brCol - node.tlCol) / 2;
if(row <= rowMid) {
if(col <= colMid) {
update(node.nw, row, col, val);
} else {
update(node.ne, row, col, val);
}
} else {
if(col <= colMid) {
update(node.sw, row, col, val);
} else {
update(node.se, row, col, val);
}
} node.sum = 0;
if(node.nw != null) {
node.sum += node.nw.sum;
}
if(node.ne != null) {
node.sum += node.ne.sum;
}
if(node.sw != null) {
node.sum += node.sw.sum;
}
if(node.se != null) {
node.sum += node.se.sum;
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
return sumRegion(root, row1, col1, row2, col2);
} private int sumRegion(SegmentTreeNode2D node, int tlRow, int tlCol, int brRow, int brCol) {
if(node.tlRow == tlRow && node.tlCol == tlCol && node.brRow == brRow && node.brCol == brCol) {
return node.sum;
}
int rowMid = node.tlRow + (node.brRow - node.tlRow) / 2;
int colMid = node.tlCol + (node.brCol - node.tlCol) / 2;
if(brRow <= rowMid) { // top-half plane
if(brCol <= colMid) { // north-west quadrant
return sumRegion(node.nw, tlRow, tlCol, brRow, brCol);
} else if(tlCol > colMid) { // north-east quadrant
return sumRegion(node.ne, tlRow, tlCol, brRow, brCol);
} else { // intersection between nw and ne
return sumRegion(node.nw, tlRow, tlCol, brRow, colMid) + sumRegion(node.ne, tlRow, colMid + 1, brRow, brCol);
}
} else if(tlRow > rowMid) { // bot-half plane
if(brCol <= colMid) { // south-west quadrant
return sumRegion(node.sw, tlRow, tlCol, brRow, brCol);
} else if(tlCol > colMid) { // south-east quadrant
return sumRegion(node.se, tlRow, tlCol, brRow, brCol);
} else { //intersection between sw and sw
return sumRegion(node.sw, tlRow, tlCol, brRow, colMid) + sumRegion(node.se, tlRow, colMid + 1, brRow, brCol);
}
} else { // full-plane intersection
if(brCol <= colMid) { // left half plane
return sumRegion(node.nw, tlRow, tlCol, rowMid, brCol) + sumRegion(node.sw, rowMid + 1, tlCol, brRow, brCol) ;
} else if(tlCol > colMid) { // right half plane
return sumRegion(node.ne, tlRow, tlCol, rowMid, brCol) + sumRegion(node.se, rowMid + 1, tlCol, brRow, brCol) ;
} else { // full-plane intersection
return sumRegion(node.nw, tlRow, tlCol, rowMid, colMid)
+ sumRegion(node.ne, tlRow, colMid + 1, rowMid, brCol)
+ sumRegion(node.sw, rowMid + 1, tlCol, brRow, colMid)
+ sumRegion(node.se, rowMid + 1, colMid + 1, brRow, brCol);
}
}
} private SegmentTreeNode2D buildTree(int[][] matrix, int tlRow, int tlCol, int brRow, int brCol) {
if(tlRow > brRow || tlCol > brCol) {
return null;
} else {
SegmentTreeNode2D node = new SegmentTreeNode2D(tlRow, tlCol, brRow, brCol);
if(tlRow == brRow && tlCol == brCol) {
node.sum = matrix[tlRow][tlCol];
} else {
int rowMid = tlRow + (brRow - tlRow) / 2;
int colMid = tlCol + (brCol - tlCol) / 2;
node.nw = buildTree(matrix, tlRow, tlCol, rowMid, colMid);
node.ne = buildTree(matrix, tlRow, colMid + 1, rowMid, brCol);
node.sw = buildTree(matrix, rowMid + 1, tlCol, brRow, colMid);
node.se = buildTree(matrix, rowMid + 1, colMid + 1, brRow, brCol);
node.sum = 0;
if(node.nw != null) {
node.sum += node.nw.sum;
}
if(node.ne != null) {
node.sum += node.ne.sum;
}
if(node.sw != null) {
node.sum += node.sw.sum;
}
if(node.se != null) {
node.sum += node.se.sum;
}
}
return node;
}
}
} // Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.update(1, 1, 10);
// numMatrix.sumRegion(1, 2, 3, 4);

2D Fenwick Tree:  -- 看了Quora一个acm大神的post以后,我决定还是要使用2D Fenwick Tree来做这题。 “https://www.quora.com/How-does-a-2D-segment-tree-work” ,代码肯定比Segment Tree简洁,而且速度也会更快。基本方法和1D非常类似,这种方法甚至可以简单地扩展到更高维度。

Time Complexity - O(mnlogm * logn) build,  O(logmn) update, O(logmn) rangeSum, Space Complexity - O(mn)

public class NumMatrix {
private int BIT2D[][];
private int matrix[][]; public NumMatrix(int[][] matrix) {
if(matrix == null || matrix.length == 0) {
return;
}
BIT2D = new int[matrix.length + 1][matrix[0].length + 1];
this.matrix = new int[matrix.length][matrix[0].length];
for(int i = 0; i < matrix.length; i++) {
for(int j = 0; j < matrix[0].length; j++) {
update(i, j, matrix[i][j]);
}
}
} public void update(int row, int col, int val) {
int delta = val - matrix[row][col];
matrix[row][col] = val;
for(int i = row + 1; i < BIT2D.length; i += i & (-i)) { //also equals to i |= i + 1
for(int j = col + 1; j < BIT2D[0].length; j += j & (-j)) {
BIT2D[i][j] += delta;
}
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
return getSum(row2 + 1, col2 + 1) - getSum(row1, col2 + 1) - getSum(row2 + 1, col1) + getSum(row1, col1);
} private int getSum(int row, int col) {
int sum = 0;
for(int i = row; i > 0; i -= i & (-i)) {
for(int j = col; j > 0; j -= j & (-j)) {
sum += BIT2D[i][j];
}
}
return sum;
}
} // Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.update(1, 1, 10);
// numMatrix.sumRegion(1, 2, 3, 4);

Reference:

https://stackoverflow.com/questions/25121878/2d-segment-quad-tree-explanation-with-c/25122078#25122078

https://sites.google.com/site/indy256/algo/fenwick_tree_2d
http://www.hawstein.com/posts/binary-indexed-trees.html
https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/
http://www.wohenniu.com/thread-872-1-1.html
http://bookshadow.com/leetcode/
http://cs.nyu.edu/courses/spring14/CSCI-UA.0480-004/
https://web.stanford.edu/class/cs97si/03-data-structures.pdf
http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-algorithm-in-plain-english

https://leetcode.com/discuss/71025/segmentation-tree-736ms-indexed-tree-492ms-based-solutions

https://leetcode.com/discuss/70992/c-solution-using-2d-binary-index-tree-easy-to-understand

https://leetcode.com/discuss/72685/share-my-java-2-d-binary-indexed-tree-solution

https://leetcode.com/discuss/71046/java-2d-binary-indexed-tree-solution-80ms

https://leetcode.com/discuss/70948/15ms-easy-to-understand-java-solution

https://leetcode.com/discuss/71169/java-2d-binary-indexed-tree-solution-clean-and-short-17ms

https://leetcode.com/problems/range-sum-query-2d-mutable/

http://www.lxway.com/5152462.htm

https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/

308. Range Sum Query 2D - Mutable的更多相关文章

  1. LeetCode 308. Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  2. Range Sum Query 2D - Mutable & Immutable

    Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...

  3. [Locked] Range Sum Query 2D - Mutable

    Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...

  4. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  5. Leetcode: Range Sum Query 2D - Mutable && Summary: Binary Indexed Tree

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  6. LeetCode Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  7. [Swift]LeetCode308. 二维区域和检索 - 可变 $ Range Sum Query 2D - Mutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  9. [LeetCode] Range Sum Query - Immutable & Range Sum Query 2D - Immutable

    Range Sum Query - Immutable Given an integer array nums, find the sum of the elements between indice ...

随机推荐

  1. linux free 命令

    命 令: free 功能说明:显示内存状态. 语 法: free [-bkmotV][-s <间隔秒数>] 补充说明:free指令会显示内存的使用情况,包括实体内存,虚拟的交换文件内存,共 ...

  2. CS小分队第一阶段冲刺站立会议(5月9日)

    昨日完成工作:对新子项目进行构思规划 遇到问题:不知道如何将excel表导入C#,对于timer控件不熟悉 今日计划:完成将存在EXCEL表中的名单导入,并进行抽号,熟悉timer控件

  3. 单元测试篇----cppUnit的安装与使用

    在刚学习单元测试章节的时候,尝试着使用dev—c++来编译cppunit,但一直没成功,也尝试问过同学,一直没有很好的方法,因此浪费了不少时间.今天又耐心的尝式一下,意外成功了.以下是详细的安装步骤: ...

  4. kernel nf_conntrack: table full, dropping packet[转载]

    http://blog.yorkgu.me/2012/02/09/kernel-nf_conntrack-table-full-dropping-packet/ 综合:ip_conntrack就是li ...

  5. hive搭建配置

    下载cd /data0/software/hivewget http://mirror.bit.edu.cn/apache/hive/hive-0.12.0/hive-0.12.0-bin.tar.g ...

  6. 设计模式之桥接模式(Bridge)

    桥接模式与原理:将抽象部分与实现部分分离,使它们都可以独立的变化.最终的结果表现在实现类中.两者之间属于等价关系,即实现部分和抽象部分可以相互交换. 代码如下 #include <iostrea ...

  7. 常用的Python字符串常量

    下面是一些常用的Python字符串常量string.digits:包含0-9的字符串string.letters:包含所有大小写字母的字符串 string.lowercase:所有小写字母string ...

  8. unity3d中dllimport方法的使用,以接入腾讯平台为例!!!

    说到有关dllimport方法可能还有很多人比较陌生,其实我自己也说不太清楚,大概说说什么时候要用它. 事实上功能类似于调用android的第三包,我们想要使用苹果上特定的api或者第三方平台的一些东 ...

  9. Map:比较新增加日期的和需要删除的日期 使用方法

    1.场景描述:根据在日历选择的日期,数据库来保持我们选择日期. 2.方法,硬删除的方法,每次全部删除,然后再重新添加选择的新的日期.这样导致如果需要保存create_time的情况,那么每次操作的都是 ...

  10. netaddr 0.7.12

    Pythonic manipulation of IPv4, IPv6, CIDR, EUI and MAC network addresses https://pypi.python.org/pyp ...