308. Range Sum Query 2D - Mutable
题目:
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
- Given matrix = [
- [3, 0, 1, 4, 2],
- [5, 6, 3, 2, 1],
- [1, 2, 0, 1, 5],
- [4, 1, 0, 1, 7],
- [1, 0, 3, 0, 5]
- ]
- sumRegion(2, 1, 4, 3) -> 8
- update(3, 2, 2)
- sumRegion(2, 1, 4, 3) -> 10
Note:
- The matrix is only modifiable by the update function.
- You may assume the number of calls to update and sumRegion function is distributed evenly.
- You may assume that row1 ≤ row2 and col1 ≤ col2.
链接: http://leetcode.com/problems/range-sum-query-2d-mutable/
题解:
二维Range Sum Query mutable,我了个去,第一次Leetcode写了超过140行代码...足够臭长了吧,但是居然能ac,还是很高兴 -____-!! 原理是要构建一个2D Segment Tree或者 2D Fenwick Tree。由于上一题是先做的Segment Tree,这回也先写2D Segment Tree。构建2D Segment Tree依然是使用Divide and Conquer,我们要把整个平面分成4个部分,所以2D Segment Tree也是一个Quad Tree,每个节点有四个子节点,NW, NE, SW, SE, 节点的sum是四个子节点的sum。这样我们就可以用与1D Segment Tree类似的方法来写rangeSum以及update。要注意rangeSum时的判断,有好几种情况,比较复杂。
2D Segment Tree: Time Complexity - O(mn) build,O(logmn) update, O(logmn) rangeSum , Space Complexity - O(mn) 复杂度算得不是很清楚,很可能不正确,二刷再继续改正。
- public class NumMatrix {
- private class SegmentTreeNode2D {
- public int tlRow;
- public int tlCol;
- public int brRow;
- public int brCol;
- public int sum;
- public SegmentTreeNode2D nw, ne, sw, se;
- public SegmentTreeNode2D(int tlRow, int tlCol, int brRow, int brCol) {
- this.tlRow = tlRow;
- this.tlCol = tlCol;
- this.brRow = brRow;
- this.brCol = brCol;
- this.sum = 0;
- }
- }
- public SegmentTreeNode2D root;
- public NumMatrix(int[][] matrix) {
- if(matrix == null || matrix.length == 0) {
- return;
- }
- root = buildTree(matrix, 0, 0, matrix.length - 1, matrix[0].length - 1);
- }
- public void update(int row, int col, int val) {
- update(root, row, col, val);
- }
- private void update(SegmentTreeNode2D node, int row, int col, int val) {
- if(node.tlRow == row && node.brRow == row && node.tlCol == col && node.brCol == col) {
- node.sum = val;
- return;
- }
- int rowMid = node.tlRow + (node.brRow - node.tlRow) / 2;
- int colMid = node.tlCol + (node.brCol - node.tlCol) / 2;
- if(row <= rowMid) {
- if(col <= colMid) {
- update(node.nw, row, col, val);
- } else {
- update(node.ne, row, col, val);
- }
- } else {
- if(col <= colMid) {
- update(node.sw, row, col, val);
- } else {
- update(node.se, row, col, val);
- }
- }
- node.sum = 0;
- if(node.nw != null) {
- node.sum += node.nw.sum;
- }
- if(node.ne != null) {
- node.sum += node.ne.sum;
- }
- if(node.sw != null) {
- node.sum += node.sw.sum;
- }
- if(node.se != null) {
- node.sum += node.se.sum;
- }
- }
- public int sumRegion(int row1, int col1, int row2, int col2) {
- return sumRegion(root, row1, col1, row2, col2);
- }
- private int sumRegion(SegmentTreeNode2D node, int tlRow, int tlCol, int brRow, int brCol) {
- if(node.tlRow == tlRow && node.tlCol == tlCol && node.brRow == brRow && node.brCol == brCol) {
- return node.sum;
- }
- int rowMid = node.tlRow + (node.brRow - node.tlRow) / 2;
- int colMid = node.tlCol + (node.brCol - node.tlCol) / 2;
- if(brRow <= rowMid) { // top-half plane
- if(brCol <= colMid) { // north-west quadrant
- return sumRegion(node.nw, tlRow, tlCol, brRow, brCol);
- } else if(tlCol > colMid) { // north-east quadrant
- return sumRegion(node.ne, tlRow, tlCol, brRow, brCol);
- } else { // intersection between nw and ne
- return sumRegion(node.nw, tlRow, tlCol, brRow, colMid) + sumRegion(node.ne, tlRow, colMid + 1, brRow, brCol);
- }
- } else if(tlRow > rowMid) { // bot-half plane
- if(brCol <= colMid) { // south-west quadrant
- return sumRegion(node.sw, tlRow, tlCol, brRow, brCol);
- } else if(tlCol > colMid) { // south-east quadrant
- return sumRegion(node.se, tlRow, tlCol, brRow, brCol);
- } else { //intersection between sw and sw
- return sumRegion(node.sw, tlRow, tlCol, brRow, colMid) + sumRegion(node.se, tlRow, colMid + 1, brRow, brCol);
- }
- } else { // full-plane intersection
- if(brCol <= colMid) { // left half plane
- return sumRegion(node.nw, tlRow, tlCol, rowMid, brCol) + sumRegion(node.sw, rowMid + 1, tlCol, brRow, brCol) ;
- } else if(tlCol > colMid) { // right half plane
- return sumRegion(node.ne, tlRow, tlCol, rowMid, brCol) + sumRegion(node.se, rowMid + 1, tlCol, brRow, brCol) ;
- } else { // full-plane intersection
- return sumRegion(node.nw, tlRow, tlCol, rowMid, colMid)
- + sumRegion(node.ne, tlRow, colMid + 1, rowMid, brCol)
- + sumRegion(node.sw, rowMid + 1, tlCol, brRow, colMid)
- + sumRegion(node.se, rowMid + 1, colMid + 1, brRow, brCol);
- }
- }
- }
- private SegmentTreeNode2D buildTree(int[][] matrix, int tlRow, int tlCol, int brRow, int brCol) {
- if(tlRow > brRow || tlCol > brCol) {
- return null;
- } else {
- SegmentTreeNode2D node = new SegmentTreeNode2D(tlRow, tlCol, brRow, brCol);
- if(tlRow == brRow && tlCol == brCol) {
- node.sum = matrix[tlRow][tlCol];
- } else {
- int rowMid = tlRow + (brRow - tlRow) / 2;
- int colMid = tlCol + (brCol - tlCol) / 2;
- node.nw = buildTree(matrix, tlRow, tlCol, rowMid, colMid);
- node.ne = buildTree(matrix, tlRow, colMid + 1, rowMid, brCol);
- node.sw = buildTree(matrix, rowMid + 1, tlCol, brRow, colMid);
- node.se = buildTree(matrix, rowMid + 1, colMid + 1, brRow, brCol);
- node.sum = 0;
- if(node.nw != null) {
- node.sum += node.nw.sum;
- }
- if(node.ne != null) {
- node.sum += node.ne.sum;
- }
- if(node.sw != null) {
- node.sum += node.sw.sum;
- }
- if(node.se != null) {
- node.sum += node.se.sum;
- }
- }
- return node;
- }
- }
- }
- // Your NumMatrix object will be instantiated and called as such:
- // NumMatrix numMatrix = new NumMatrix(matrix);
- // numMatrix.sumRegion(0, 1, 2, 3);
- // numMatrix.update(1, 1, 10);
- // numMatrix.sumRegion(1, 2, 3, 4);
2D Fenwick Tree: -- 看了Quora一个acm大神的post以后,我决定还是要使用2D Fenwick Tree来做这题。 “https://www.quora.com/How-does-a-2D-segment-tree-work” ,代码肯定比Segment Tree简洁,而且速度也会更快。基本方法和1D非常类似,这种方法甚至可以简单地扩展到更高维度。
Time Complexity - O(mnlogm * logn) build, O(logmn) update, O(logmn) rangeSum, Space Complexity - O(mn)
- public class NumMatrix {
- private int BIT2D[][];
- private int matrix[][];
- public NumMatrix(int[][] matrix) {
- if(matrix == null || matrix.length == 0) {
- return;
- }
- BIT2D = new int[matrix.length + 1][matrix[0].length + 1];
- this.matrix = new int[matrix.length][matrix[0].length];
- for(int i = 0; i < matrix.length; i++) {
- for(int j = 0; j < matrix[0].length; j++) {
- update(i, j, matrix[i][j]);
- }
- }
- }
- public void update(int row, int col, int val) {
- int delta = val - matrix[row][col];
- matrix[row][col] = val;
- for(int i = row + 1; i < BIT2D.length; i += i & (-i)) { //also equals to i |= i + 1
- for(int j = col + 1; j < BIT2D[0].length; j += j & (-j)) {
- BIT2D[i][j] += delta;
- }
- }
- }
- public int sumRegion(int row1, int col1, int row2, int col2) {
- return getSum(row2 + 1, col2 + 1) - getSum(row1, col2 + 1) - getSum(row2 + 1, col1) + getSum(row1, col1);
- }
- private int getSum(int row, int col) {
- int sum = 0;
- for(int i = row; i > 0; i -= i & (-i)) {
- for(int j = col; j > 0; j -= j & (-j)) {
- sum += BIT2D[i][j];
- }
- }
- return sum;
- }
- }
- // Your NumMatrix object will be instantiated and called as such:
- // NumMatrix numMatrix = new NumMatrix(matrix);
- // numMatrix.sumRegion(0, 1, 2, 3);
- // numMatrix.update(1, 1, 10);
- // numMatrix.sumRegion(1, 2, 3, 4);
Reference:
https://stackoverflow.com/questions/25121878/2d-segment-quad-tree-explanation-with-c/25122078#25122078
https://sites.google.com/site/indy256/algo/fenwick_tree_2d
http://www.hawstein.com/posts/binary-indexed-trees.html
https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/
http://www.wohenniu.com/thread-872-1-1.html
http://bookshadow.com/leetcode/
http://cs.nyu.edu/courses/spring14/CSCI-UA.0480-004/
https://web.stanford.edu/class/cs97si/03-data-structures.pdf
http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-algorithm-in-plain-english
https://leetcode.com/discuss/71025/segmentation-tree-736ms-indexed-tree-492ms-based-solutions
https://leetcode.com/discuss/70992/c-solution-using-2d-binary-index-tree-easy-to-understand
https://leetcode.com/discuss/72685/share-my-java-2-d-binary-indexed-tree-solution
https://leetcode.com/discuss/71046/java-2d-binary-indexed-tree-solution-80ms
https://leetcode.com/discuss/70948/15ms-easy-to-understand-java-solution
https://leetcode.com/discuss/71169/java-2d-binary-indexed-tree-solution-clean-and-short-17ms
https://leetcode.com/problems/range-sum-query-2d-mutable/
http://www.lxway.com/5152462.htm
https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/
308. Range Sum Query 2D - Mutable的更多相关文章
- LeetCode 308. Range Sum Query 2D - Mutable
原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...
- Range Sum Query 2D - Mutable & Immutable
Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...
- [Locked] Range Sum Query 2D - Mutable
Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...
- [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- Leetcode: Range Sum Query 2D - Mutable && Summary: Binary Indexed Tree
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- LeetCode Range Sum Query 2D - Mutable
原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...
- [Swift]LeetCode308. 二维区域和检索 - 可变 $ Range Sum Query 2D - Mutable
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- [LeetCode] Range Sum Query - Immutable & Range Sum Query 2D - Immutable
Range Sum Query - Immutable Given an integer array nums, find the sum of the elements between indice ...
随机推荐
- 使用VBA实现Excel自杀功能
曾经看到过一个“Excel-Home”出品的“关于Excel自杀功能”的视频教程,经认真学习后,我写下了自己的代码,分享于此. 实现思路: 使用VBA创建一个隐藏的名称,记录当前工作簿打开的次数,如果 ...
- JavaScript插入节点
1. document.write("<p>This is inserted.</p>"); 该方法必须加在HTML文档内,违背了结构行为分离原则,不推荐. ...
- net core 实战之 redis 负载均衡和"高可用"实现
net core 实战之 redis 负载均衡和"高可用"实现 1.概述 分布式系统缓存已经变得不可或缺,本文主要阐述如何实现redis主从复制集群的负载均衡,以及 redis的& ...
- 软件工程结对开发——返回一个整数数组中最大子数组的和(JAVA)
题目:返回一个整数数组中最大子数组的和. 要求: 输入一个整型数组,数组里有正数也有负数: 数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和: 求所有子数组的和的最大值.要求时间复杂度为 ...
- 30道四则运算题目---课堂作业--软件工程c++
问题:设计一程序,给二年级小学生随机产生四则运算题目. 一.设计思考问题: 1.四则运算需要俩个运算数和一个运算符. 2.如何产生随机数? 3.如何实现随机产生四则运算? 4.题目是否符合小学生学习范 ...
- [转载]char * 和char []的区别---之第二篇
原文地址:http://blog.sina.com.cn/s/blog_74a4593801019keb.html main() { char *p="abc123ABC";//c ...
- 利用Java实现表达式二叉树
(*^-^*) 什么是二叉树,这里不再介绍,可以自行百度:二叉树.在这里利用java实现“表达式二叉树”. 表达式二叉树的定义 第一步先要搞懂表达式二叉树是个什么东东?举个栗子,表达式:(a+b×(c ...
- bzoj 2821 分块处理
大题思路就是分块,将n个数分成sqrt(n)个块,然后 处理出一个w数组,w[i,j]代表第i个块到第j个块的答案 那么对于每组询问l,r如果l,r在同一个块中,直接暴力做就行了 如果不在同一个块中, ...
- Keil中的code关键字
一般说来,我们在C语言中定义的每一个变量初始化后都会占用一定的内存(RAM)空间.但是在keil中提供了一个特殊的关键字“code”,这个关键字在标准C中是没有的.其语法举例如下: unsigned ...
- ZendStudio导入一个已有的网站
解决方法:新建'PHP Project',选择'Create project at existiong location(from existing source)',路径指向你的网站根目录.