题目链接:http://codeforces.com/contest/597/problem/C

思路:dp[i][j]表示长度为i,以j结尾的上升子序列,则有dp[i][j]= ∑dp[i-1][k](1<=k<j),由于要求前缀和,可以用树状数组优化

#include<bits/stdc++.h>
#define lowbit(x) x&(-x)
typedef long long ll;
const int N=1e5+3;
ll dp[12][N];
using namespace std;
void update(int i,int pos,ll num,int n)
{
while(pos <= n)
{
dp[i][pos] += num;
pos += lowbit(pos);
}
}
ll sum(int i,int pos)
{
ll res=0;
while(pos)
{
res += dp[i][pos];
pos -= lowbit(pos);
}
return res;
}
int main()
{
int n,k,x;
scanf("%d %d",&n,&k);
for(int i = 1 ;i <= n ;i++)
{
scanf("%d",&x);
update(1,x,1,n);
for(int j = 2 ;j <= k+1 ;j++)
update(j,x,sum(j-1,x-1),n);
}
printf("%I64d\n",sum(k+1,n));
return 0;
}

codeforces 597C (树状数组+DP)的更多相关文章

  1. Codeforces 597C. Subsequences (树状数组+dp)

    题目链接:http://codeforces.com/contest/597/problem/C 给你n和数(1~n各不同),问你长为k+1的上升自序列有多少. dp[i][j] 表示末尾数字为i 长 ...

  2. CodeForces - 314C Sereja and Subsequences (树状数组+dp)

    Sereja has a sequence that consists of n positive integers, a1, a2, ..., an. First Sereja took a pie ...

  3. HDU 3333 | Codeforces 703D 树状数组、离散化

    HDU 3333:http://acm.hdu.edu.cn/showproblem.php?pid=3333 这两个题是类似的,都是离线处理查询,对每次查询的区间的右端点进行排序.这里我们需要离散化 ...

  4. hdu 4622 Reincarnation trie树+树状数组/dp

    题意:给你一个字符串和m个询问,问你l,r这个区间内出现过多少字串. 连接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 网上也有用后缀数组搞得. 思路 ...

  5. HDU2227Find the nondecreasing subsequences(树状数组+DP)

    题目大意就是说帮你给出一个序列a,让你求出它的非递减序列有多少个. 设dp[i]表示以a[i]结尾的非递减子序列的个数,由题意我们可以写出状态转移方程: dp[i] = sum{dp[j] | 1&l ...

  6. HDU 6348 序列计数 (树状数组 + DP)

    序列计数 Time Limit: 4500/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  7. [Codeforces261D]Maxim and Increasing Subsequence——树状数组+DP

    题目链接: Codeforces261D 题目大意:$k$次询问,每次给出一个长度为$n$的序列$b$及$b$中的最大值$maxb$,构造出序列$a$为$t$个序列$b$连接而成,求$a$的最长上升子 ...

  8. 【XSY2727】Remove Dilworth定理 堆 树状数组 DP

    题目描述 一个二维平面上有\(n\)个梯形,满足: 所有梯形的下底边在直线\(y=0\)上. 所有梯形的上底边在直线\(y=1\)上. 没有两个点的坐标相同. 你一次可以选择任意多个梯形,必须满足这些 ...

  9. hdu5489 树状数组+dp

    2015-10-06 21:49:54 这题说的是个给了一个数组,然后删除任意起点的一个连续的L个数,然后求最长递增子序列<是递增,不是非递减>,用一个树状数组维护一下就ok了 #incl ...

随机推荐

  1. TCP与UDP

    TCP(Transmission Control Protocol,传输控制协议)是面向连接的协议:可靠.保证正确性:顺序到达:流量控制.拥塞控制:重传机制.窗口机制:对系统资源.时间要求多:流模式S ...

  2. cf(#div1 A. Dreamoon and Sums)(数论)

    A. Dreamoon and Sums time limit per test 1.5 seconds memory limit per test 256 megabytes input stand ...

  3. 20145236 《Java程序设计》实验四实验报告

    20145236 实验四 Android开发基础 实验内容: 1.基于Android Studio开发简单的Android应用并部署测试; 2.了解Android组件.布局管理器的使用: 3.掌握An ...

  4. 根据采购/销售订单创建STO/SO

    FUNCTION Z_SD_CREATE_DN. *"-------------------------------------------------------------------- ...

  5. node 日志管理log4js

    node 日志管理log4js 一.默认的控制台输出 我们使用express框架时,开发模式用node或者supervisor启动nodejs应用时,控制台都是显示如下的日志. GET /css/bo ...

  6. struts2视频学习笔记 11-12(动态方法调用,接收请求参数)

    课时11 动态方法调用 如果Action中存在多个方法时,可以使用!+方法名调用指定方法.(不推荐使用) public String execute(){ setMsg("execute&q ...

  7. Java多线程-新特征-锁(下)

    在上文中提到了Lock接口以及对象,使用它,很优雅的控制了竞争资源的安全访问,但是这种锁不区分读写,称这种锁为普通锁.为了提高性能,Java提供了读写锁,在读的地方使用读锁,在写的地方使用写锁,灵活控 ...

  8. C# + winserver2008 openfiledialog 写入 textbox1 中的 路径不正确

    System.IO.Path.GetFullPath(openFileDialog1.FileName);//绝对路径 System.IO.Path.GetExtension(openFileDial ...

  9. ASP.NET-遇到的错误汇总

    错误:“未在本地计算机上注册“Microsoft.Jet.OLEDB.4.0”提供程序.” 在win7 64未上,读取Excel中的数据时报的错误, 解决方法:在生成"配置管理器中" ...

  10. spring mvc上传图片

    1.需要commons-fileupload.jar commons-io.jar 2.需要在springmvc.xml中 配置存放静态资源的路径,对图片等静态资源放行 <mvc:resourc ...