bloom filter 详解[转]
Bloom Filter概念和原理
焦萌 2007年1月27日
Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。
集合表示和元素查询
下面我们具体来看Bloom Filter是如何用位数组表示集合的。初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0。
为了表达S={x1, x2,…,xn}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为1(1≤i≤k)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位)。
在判断y是否属于这个集合时,我们对y应用k次哈希函数,如果所有hi(y)的位置都是1(1≤i≤k),那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y1就不是集合中的元素。y2或者属于这个集合,或者刚好是一个false positive。
错误率估计
前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设kn<m且各个哈希函数是完全随机的。当集合S={x1, x2,…,xn}的所有元素都被k个哈希函数映射到m位的位数组中时,这个位数组中某一位还是0的概率是:
其中1/m表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的),(1-1/m)表示哈希一次没有选中这一位的概率。要把S完全映射到位数组中,需要做kn次哈希。某一位还是0意味着kn次哈希都没有选中它,因此这个概率就是(1-1/m)的kn次方。令p = e-kn/m是为了简化运算,这里用到了计算e时常用的近似:
令ρ为位数组中0的比例,则ρ的数学期望E(ρ)= p’。在ρ已知的情况下,要求的错误率(false positive rate)为:
(1-ρ)为位数组中1的比例,(1-ρ)k就表示k次哈希都刚好选中1的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。M. Mitzenmacher已经证明[2] ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将p和p’代入上式中,得:
相比p’和f’,使用p和f通常在分析中更为方便。
最优的哈希函数个数
既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到0的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。
先用p和f进行计算。注意到f = exp(k ln(1 − e−kn/m)),我们令g = k ln(1 − e−kn/m),只要让g取到最小,f自然也取到最小。由于p = e-kn/m,我们可以将g写成
根据对称性法则可以很容易看出当p = 1/2,也就是k = ln2· (m/n)时,g取得最小值。在这种情况下,最小错误率f等于(1/2)k ≈ (0.6185)m/n。另外,注意到p是位数组中某一位仍是0的概率,所以p = 1/2对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。
需要强调的一点是,p = 1/2时错误率最小这个结果并不依赖于近似值p和f。同样对于f’ = exp(k ln(1 − (1 − 1/m)kn)),g’ = k ln(1 − (1 − 1/m)kn),p’ = (1 − 1/m)kn,我们可以将g’写成
同样根据对称性法则可以得到当p’ = 1/2时,g’取得最小值。
位数组的大小
下面我们来看看,在不超过一定错误率的情况下,Bloom Filter至少需要多少位才能表示全集中任意n个元素的集合。假设全集中共有u个元素,允许的最大错误率为є,下面我们来求位数组的位数m。
假设X为全集中任取n个元素的集合,F(X)是表示X的位数组。那么对于集合X中任意一个元素x,在s = F(X)中查询x都能得到肯定的结果,即s能够接受x。显然,由于Bloom Filter引入了错误,s能够接受的不仅仅是X中的元素,它还能够є (u - n)个false positive。因此,对于一个确定的位数组来说,它能够接受总共n + є (u - n)个元素。在n + є (u - n)个元素中,s真正表示的只有其中n个,所以一个确定的位数组可以表示
个集合。m位的位数组共有2m个不同的组合,进而可以推出,m位的位数组可以表示
个集合。全集中n个元素的集合总共有
个,因此要让m位的位数组能够表示所有n个元素的集合,必须有
即:
上式中的近似前提是n和єu相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:在错误率不大于є的情况下,m至少要等于n log2(1/є)才能表示任意n个元素的集合。
上一小节中我们曾算出当k = ln2· (m/n)时错误率f最小,这时f = (1/2)k = (1/2)mln2 / n。现在令f≤є,可以推出
这个结果比前面我们算得的下界n log2(1/є)大了log2 e ≈ 1.44倍。这说明在哈希函数的个数取到最优时,要让错误率不超过є,m至少需要取到最小值的1.44倍。
总结
在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。Bloom Filter在时间空间这两个因素之外又引入了另一个因素:错误率。在使用Bloom Filter判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合(False Positive),但不会把属于这个集合的元素误认为不属于这个集合(False Negative)。在增加了错误率这个因素之后,Bloom Filter通过允许少量的错误来节省大量的存储空间。
自从Burton Bloom在70年代提出Bloom Filter之后,Bloom Filter就被广泛用于拼写检查和数据库系统中。近一二十年,伴随着网络的普及和发展,Bloom Filter在网络领域获得了新生,各种Bloom Filter变种和新的应用不断出现。可以预见,随着网络应用的不断深入,新的变种和应用将会继续出现,Bloom Filter必将获得更大的发展。
参考资料
[1] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. Internet Mathematics, 1(4):485–509, 2005.
[2] M. Mitzenmacher. Compressed Bloom Filters. IEEE/ACM Transactions on Networking 10:5 (2002), 604—612.
[3] www.cs.jhu.edu/~fabian/courses/CS600.624/slides/bloomslides.pdf
[4] http://166.111.248.20/seminar/2006_11_23/hash_2_yaxuan.ppt
bloom filter 详解[转]的更多相关文章
- 布隆过滤器(Bloom Filter)详解——基于多hash的概率查找思想
转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- [转载] 布隆过滤器(Bloom Filter)详解
转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- 布隆过滤器(Bloom Filter)详解
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一 ...
- 海量数据处理之Bloom Filter详解
前言 : 即可能误判 不会漏判 一.什么是Bloom Filter Bloom Filter是一种空间效率很高的随机数据结构,它的原理是,当一个元素被加入集合时,通过K个Hash函 ...
- python logging模块详解[转]
一.简单将日志打印到屏幕: import logging logging.debug('debug message') logging.info('info message') logging.war ...
- Objective-C之run loop详解[转]
做了一年多的IOS开发,对IOS和Objective-C深层次的了解还十分有限,大多还停留在会用API的级别,这是件挺可悲的事情.想学好一门语言还是需要深层次的了解它,这样才能在使用的时候得心应手,出 ...
- JAVA RSA非对称加密详解[转载]
一.概述1.RSA是基于大数因子分解难题.目前各种主流计算机语言都支持RSA算法的实现2.java6支持RSA算法3.RSA算法可以用于数据加密和数字签名4.RSA算法相对于DES/AES等对称加密算 ...
- PostgreSQL.conf文件配置详解[转]
一.连接配置与安全认证 1.连接Connection Settings listen_addresses (string) 这个参数只有在启动数据库时,才能被设置.它指定数据库用来监听客户端连接的 ...
- css filter详解
css filter详解 filter 属性详解 属性 名称 类型 说明 grayscale 灰度 值为数值 取值范围从0到1的小数(包括0和1) sepia 褐色 值为数值 取值范围从0到1的小数( ...
随机推荐
- java中几种常见字符集与乱码介绍
1. ASCII和Ansi编码 字符内码(charcter code)指的是用来代表字符的内码 .读者在输入和存储文档时都要使用内码,内码分为 单字节内码 -- Single-Byte chara ...
- python项目练习3:万能的XML
1.目的 如何用XML来表示多种数据,以及如何使用适合XML或SAX的简单API来处理XML文本.目标是通过一个描述各种网页和目录的XML文件生成一个完整的网站. 注:有关XML的描述参见http:/ ...
- DAG模型
数字三角形: 1.递归计算 int solve(int i,int j) { :max(solve(i+,j),solve(i+,j+))); } 2.记忆化搜索,不用指明计算顺序,并且保证每个状态只 ...
- Poj(1325),最小点覆盖
题目链接:http://poj.org/problem?id=1325 Machine Schedule Time Limit: 1000MS Memory Limit: 10000K Total ...
- 字符串和date之间的相互转换方法
/** * 字符串转Date方法 * @param dateStr * @param format 如yyyy-MM-dd HH:mm:ss等 * @return * @throws Exceptio ...
- acdream Divide Sum
Divide Sum Time Limit: 2000/1000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitSta ...
- C# 中var as is 泛型集合
一.var var:万能变量类型,跟JS一样. 二.as:非强转类型. 强转类型:一般在变量前面加:(所需类型).如果转换失败,系统就会报错,如果用as,就不会报错,转换失败的话,就会返回null, ...
- tee 命令基本使用方法、输出到多个文件
功能说明:读取标准输入的数据,并将其内容输出成文件.语 法:tee [-ai][--help][--version][文件...]补充说明:tee指令会从标准输入设备读取数据,将其内容输出到标准输出 ...
- Python 2.7.9 Demo - 三元表达式
#coding=utf-8 #!/usr/bin/python import logging; a = 'abc'; print 'Y' if isinstance(a, str) else 'N';
- Python3基础 大于一个数的同时小于一个数
镇场诗:---大梦谁觉,水月中建博客.百千磨难,才知世事无常.---今持佛语,技术无量愿学.愿尽所学,铸一良心博客.------------------------------------------ ...