转:c++内存分配
第一篇:
http://my.oschina.net/pollybl1255/blog/140323
BSS段:(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域。BSS是英文Block Started by Symbol的简称。BSS段属于静态内存分配。
例如:
#include <stdio.h>
int g1=0, g2=0, g3=0;
int max(int i)
{
int m1=0,m2,m3=0,*p_max;
static n1_max=0,n2_max,n3_max=0;
p_max = (int*)malloc(10);
printf("打印max程序地址\n");
printf("in max: 0x%08x\n\n",max);
printf("打印max传入参数地址\n");
printf("in max: 0x%08x\n\n",&i);
printf("打印max函数中静态变量地址\n");
printf("0x%08x\n",&n1_max); //打印各本地变量的内存地址
printf("0x%08x\n",&n2_max);
printf("0x%08x\n\n",&n3_max);
printf("打印max函数中局部变量地址\n");
printf("0x%08x\n",&m1); //打印各本地变量的内存地址
printf("0x%08x\n",&m2);
printf("0x%08x\n\n",&m3);
printf("打印max函数中malloc分配地址\n");
printf("0x%08x\n\n",p_max); //打印各本地变量的内存地址
if(i) return 1;
else return 0;
}
int main(int argc, char **argv)
{
static int s1=0, s2, s3=0;
int v1=0, v2, v3=0;
int *p;
p = (int*)malloc(10);
printf("打印各全局变量(已初始化)的内存地址\n");
printf("0x%08x\n",&g1); //打印各全局变量的内存地址
printf("0x%08x\n",&g2);
printf("0x%08x\n\n",&g3);
printf("======================\n");
printf("打印程序初始程序main地址\n");
printf("main: 0x%08x\n\n", main);
printf("打印主参地址\n");
printf("argv: 0x%08x\n\n",argv);
printf("打印各静态变量的内存地址\n");
printf("0x%08x\n",&s1); //打印各静态变量的内存地址
printf("0x%08x\n",&s2);
printf("0x%08x\n\n",&s3);
printf("打印各局部变量的内存地址\n");
printf("0x%08x\n",&v1); //打印各本地变量的内存地址
printf("0x%08x\n",&v2);
printf("0x%08x\n\n",&v3);
printf("打印malloc分配的堆地址\n");
printf("malloc: 0x%08x\n\n",p);
printf("======================\n");
max(v1);
printf("======================\n");
printf("打印子函数起始地址\n");
printf("max: 0x%08x\n\n",max);
return 0;
}
打印结果:
可以大致查看整个程序在内存中的分配情况:
可以看出,传入的参数,局部变量,都是在栈顶分布,随着子函数的增多而向下增长.
函数的调用地址(函数运行代码),全局变量,静态变量都是在分配内存的低部存在,而malloc分配的堆则存在于这些内存之上,并向上生长.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
在操作系统中,一个进程就是处于执行期的程序(当然包括系统资源),实际上正在执行的程序代码的活标本。那么进程的逻辑地址空间是如何划分的呢?
引用:
图1做了简单的说明(Linux系统下的)
左边的是UNIX/LINUX系统的执行文件,右边是对应进程逻辑地址空间的划分情况。
首先是堆栈区(stack),堆栈是由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。栈的申请是由系统自动分配,如在函数内部申请一个局部变量 int h,同时判别所申请空间是否小于栈的剩余空间,如若小于的话,在堆栈中为其开辟空间,为程序提供内存,否则将报异常提示栈溢出。
其次是堆(heap),堆一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。堆的申请是由程序员自己来操作的,在C中使用malloc函数,而C++中使用new运算符,但是堆的申请过程比较复杂:当系统收到程序的申请时,会遍历记录空闲内存地址的链表,以求寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,此处应该注意的是有些情况下,新申请的内存块的首地址记录本次分配的内存块大小,这样在delete尤其是delete[]时就能正确的释放内存空间。
接着是全局数据区(静态区) (static),全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 另外文字常量区,常量字符串就是放在这里,程序结束后有系统释放。
最后是程序代码区,放着函数体的二进制代码。
举例说明一下:
int a = 0; //全局初始化区
char *p1; //全局未初始化区
int main()
{
int b; // 栈
char s[] = "abc"; //栈
char *p2; //栈
char *p3 = "123456"; //123456\0在常量区,而p3在栈上。
static int c =0; //全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20); //分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); //123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
return 0;
}
第二篇:
http://blog.csdn.net/yeyuangen/article/details/6766567
1.函数代码存放在代码段。声明的类如果从未使用,则在编译时,会优化掉,其成员函数不占代码段空间。
全局变量或静态变量,放在数据段,
局部变量放在栈中,
用new产生的对象放在堆中,
内存分为4段,栈区,堆区,代码区,全局变量区
BSS段:BSS段(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域。
BSS是英文Block Started by Symbol的简称。BSS段属于静态内存分配。
2.代码段、数据段、栈是CPU级别的逻辑概念,堆是语言级别的逻辑概念
3.还有一个常量区,其中的内容不许修改。
常见的 char *p = "hello"; 这里面的"hello"就保存在常量区
4.如1楼所说,把代码段、数据段,栈,堆这些并列在一起不太合适
代码段、数据段、堆栈段,这是一个概念
堆、栈、全局区、常量区,这是另一个概念
5.STACK(栈)临时局部
HEAP(堆)动态
RW(读写)全局
RO(只读)代码
Char* s=”Hello,World”; S中“H”存放在内存RO中且不能修改。
6.CPU寄存器:CPU寄存器,其实就是来控制代码段和数据段的指令及数据读取的地方,当然,CPU也有自己存放数据的地方,那就是通用寄存器里的数据寄存器,通常是EDX寄存器,C语言里有个register,就是把数据放在这个寄存器里,这样读取数据就相当的快了,因为不用去内存找,就省去了寻址和传送数据的时间开销。他还有一些寄存器是用来指示当前代码段的位置、数据段的位置、堆栈段的位置等等(注意这里存放的只是相应的代码或数据在内存中的地址,并不是实际的值,然后根据这个地址,通过地址总线和数据总线,去内存中获取相应的值),不然在执行代码的时候,指令和数据从哪取呢?呵呵。。。他里面还有标志寄存器,用来标识一些状态位,比如标识算术溢出呀等等。。。。。
————————————————————————————————————————————————————————————————
内存分段(笔记)
在冯诺依曼的体系结构中必须有:代码段,堆栈段,数据段
因为冯氏结构,本质就是取址,执行的过程
编译器和系统在为变量分配是从高地址开始分配的.
全局变量和函数参数在内存中的存储是由低地值到高地址的.
函数参数为什么会放到堆区呢?
这是因为我们的函数是在程序运行中进行动态的调用的.
在函数的编译阶段根本无法确定他会调用几次,会需要多少内存.
即使可以确定那时候就为变量分配好内存着实也是一种浪费。
所以编译器为函数参数选择动态的分配..即在每次调用函数时才为它动态的进行分配空间.
####################################################
内存分为4段,栈区,堆区,代码区,全局变量区
BSS段:BSS段(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域。
BSS是英文Block Started by Symbol的简称。BSS段属于静态内存分配。
数据段:数据段(data segment)通常是指用来存放程序中已初始化的全局变量的一块内存区域。数据段属于静态内存分配。
代码段:代码段(code segment/text segment)通常是指用来存放程序执行代码的一块内存区域。
这部分区域的大小在程序运行前就已经确定,并且内存区域通常属于只读, 某些架构也允许代码段为可写,即允许修改程序。
在代码段中,也有可能包含一些只读的常数变量,例如字符串常量等。代码段是存放了程序代码的数据,
假如机器中有数个进程运行相同的一个程序,那么它们就可以使用同一个代码段。
堆(heap):堆是用于存放进程运行中被动态分配的内存段,它的大小并不固定,
可动态扩张或缩减。当进程调用malloc等函数分配内存时,新分配的内存就被动态添加到堆上(堆被扩张);
当利用free等函数释放内存时,被释放的内存从堆中被剔除(堆被缩减)
栈(stack):栈又称堆栈, 是用户存放程序临时创建的局部变量,
也就是说我们函数括弧“{}”中定义的变量(但不包括static声明的变量,static意味着在数据段中存放变量)。
除此以外,在函数被调用时,其参数也会被压入发起调用的进程栈中,并且待到调用结束后,函数的返回值也会被存放回栈中。
由于栈的先进先出特点,所以栈特别方便用来保存/恢复调用现场。从这个意义上讲,我们可以把堆栈看成一个寄存、交换临时数据的内存区。
(1)内存分段和内存分页一样都是一种内存管理技术,分段:权限保护,分页:虚拟内存.
(2)分段后,程序员可以定义自己的段,各段有独立的地址空间,象进程的地址空间互相独立一样.
(3)同一个类的实例分配在一个段中,只有该类的方法可以访问,如果其他类的方法去访问,会因为段保护而出错.可以从硬件上实现类的数据保护和隐藏
####################################################################
分段好处:
cpu中的段寄存器-------段址(base)和偏移值的上限(limit)。
段址:有效地址 中,如果有效地址大于limit,便会引发异常。这样就可以限制程序不能范围当前段外的数据,不能访问其他程序的数据。
面向对象的好处:对象就是一块连续的内存中的数据
寄存器是特殊形式的内存,嵌入到处理器内部。
每个进程需要访问内存中属于自身的区域,因此,可将内存划分成小的段,按需分发给进程。
寄存器用来存储和跟踪进程当前维护的段。偏移寄存器(Offset Registers)用来跟踪关键的数据放在段中的位置。
在进程被载入内存中时,基本上被分裂成许多小的节(section)。我们比较关注的是6个主要的节:
(1) .text 节
.text 节基本上相当于二进制可执行文件的.text部分,它包含了完成程序任务的机器指令。
该节标记为只读,如果发生写操作,会造成segmentation fault。在进程最初被加载到内存中开始,该节的大小就被固定。
(2).data 节
.data节用来存储初始化过的变量,如:int a =0 ; 该节的大小在运行时固定的。
(3).bss 节
栈下节(below stack section ,即.bss)用来存储为初始化的变量,如:int a; 该节的大小在运行时固定的。
(4) 堆节
堆节(heap section)用来存储动态分配的变量,位置从内存的低地址向高地址增长。内存的分配和释放通过malloc() 和 free() 函数控制。
(5) 栈节
栈节(stack section)用来跟踪函数调用(可能是递归的),在大多数系统上从内存的高地址向低地址增长。
同时,栈这种增长方式,导致了缓冲区溢出的可能性。
(6)环境/参数节
环境/参数节(environment/arguments section)用来存储系统环境变量的一份复制文件,
进程在运行时可能需要。例如,运行中的进程,可以通过环境变量来访问路径、shell 名称、主机名等信息。
该节是可写的,因此在格式串(format string)和缓冲区溢出(buffer overflow)攻击中都可以使用该节。
另外,命令行参数也保持在该区域中。
################################################################################
以win32程序为例。
程序执行时,操作系统将exe文件映射入内存。exe文件格式为头数据和各段数据组成。
头数据说明了exe文件的属性和执行环境,段数据又分为数据段,代码段,资源段等,段的多少和位置由头数据说明。
也就是说,不仅仅只是代码段和数据段。这些段由不同的编译环境和编译参数控制,由编译器自动生成exe的段和文件格式。
当操作系统执行exe时,会动态建立堆栈段,它是动态的,并且属于操作系统执行环境。
也就是说,程序在内存的映射一个为exe文件映射,包括数据段、代码段等它是不变的。
另一个为堆栈段,它是随程序运行动态改变的。
1、编译器把源代码转化成分立的目标代码(.o或者.obj)文件,这些文件中的代码已经是可执行的机器码或者是中间代码。
但是其中变量等事物的地址只是一些符号。
2、接下来是通过链接器处理这些目标代码,主要目的就是把分立的目标代码连接成一份完整的可执行代码,
并将其中的地址符号换成相对地址。如果这时候产生错误,我们就可以得到一份地址符号列表,而不是变量列表。
3、执行程序的时候操作系统分配足够的内存空间,建立好系统支撑结构后把二进制可执行代码读入内存中。
在读入过程中内存首址就成了程序的“绝对地址”(实际上还是相对地址,不过是操作系统里的相对地址了)。
于是绝对地址+相对地址(就是偏移量)就得到了变量的地址。
因此,CS的值是由系统填入的,而其它S寄存器的值则是根据程序代码中附加的信息计算后得到的。
第三篇:
http://www.cnblogs.com/daocaoren/archive/2011/06/29/2092957.html
栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清除的变量的存储区。里面的变量通常是局部变量、函数参数等。在一个进程中,位于用户虚拟地址空间顶部的是用户栈,编译器用它来实现函数的调用。和堆一样,用户栈在程序执行期间可以动态地扩展和收缩。
堆,就是那些由 new 分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个 new 就要对应一个 delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。堆可以动态地扩展和收缩。
自由存储区,就是那些由 malloc 等分配的内存块,他和堆是十分相似的,不过它是用 free 来结束自己的生命的。
全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的 C 语言中,全局变量又分为初始化的和未初始化的(初始化的全局变量和静态变量在一块区域,未初始化的全局变量与静态变量在相邻的另一块区域,同时未被初始化的对象存储区可以通过 void* 来访问和操纵,程序结束后由系统自行释放),在 C++ 里面没有这个区分了,他们共同占用同一块内存区。
常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多)
明确区分堆与栈
在 BBS 上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。
首先,我们举一个例子:
void f() { int* p=newint[5]; }
这条短短的一句话就包含了堆与栈,看到 new,我们首先就应该想到,我们分配了一块堆内存,那么指针 p 呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针 p。在程序会先确定在堆中分配内存的大小,然后调用 operator new 分配内存,然后返回这块内存的首地址,放入栈中,他在 VC6 下的汇编代码如下:
00401028push 14h 0040102Acall operator new (00401060) 0040102Fadd esp,4 00401032mov dword ptr [ebp-8],eax 00401035mov eax,dword ptr [ebp-8] 00401038mov dword ptr [ebp-4],eax
这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是 delete p 么?噢,错了,应该是 delete []p,这是为了告诉编译器:我删除的是一个数组,VC6 就会根据相应的 Cookie 信息去进行释放内存的工作。
好了,我们回到我们的主题:堆和栈究竟有什么区别?
主要的区别由以下几点:
1、管理方式不同;
2、空间大小不同;
3、能否产生碎片不同;
4、生长方向不同;
5、分配方式不同;
6、分配效率不同;
管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。
空间大小:一般来讲在 32 位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改:打开工程,依次操作菜单如下:Project->Setting->Link,在 Category 中选中 Output,然后在 Reserve 中设定堆栈的最大值和 commit。注意:reserve 最小值为 4Byte;commit 是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。
碎片问题:对于堆来讲,频繁的 new/delete 势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。
生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。
分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由 malloc 函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。
分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是 C/C++ 函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。
从这里我们可以看到,堆和栈相比,由于大量 new/delete 的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址,EBP 和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。
虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。
无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果,就算是在你的程序运行过程中,没有发生上面的问题,你还是要小心,说不定什么时候就崩掉,那时候 debug 可是相当困难的 :)
对了,还有一件事,如果有人把堆栈合起来说,那它的意思是栈,可不是堆,呵呵,清楚了?
static 用来控制变量的存储方式和可见性
函数内部定义的变量,在程序执行到它的定义处时,编译器为它在栈上分配空间,函数在栈上分配的空间在此函数执行结束时会释放掉,这样就产生了一个问题: 如果想将函数中此变量的值保存至下一次调用时,如何实现? 最容易想到的方法是定义一个全局的变量,但定义为一个全局变量有许多缺点,最明显的缺点是破坏了此变量的访问范围(使得在此函数中定义的变量,不仅仅受此 函数控制)。需要一个数据对象为整个类而非某个对象服务,同时又力求不破坏类的封装性,即要求此成员隐藏在类的内部,对外不可见。
static 的内部机制:
静态数据成员要在程序一开始运行时就必须存在。因为函数在程序运行中被调用,所以静态数据成员不能在任何函数内分配空间和初始化。这样,它的空间分配有三个可能的地方,一是作为类的外部接口的头文件,那里有类声明;二是类定义的内部实现,那里有类的成员函数定义;三是应用程序的 main()函数前的全局数据声明和定义处。
静态数据成员要实际地分配空间,故不能在类的声明中定义(只能声明数据成员)。类声明只声明一个类的“尺寸和规格”,并不进行实际的内存分配,所以在类声明中写成定义是错误的。它也不能在头文件中类声明的外部定义,因为那会造成在多个使用该类的源文件中,对其重复定义。
static 被引入以告知编译器,将变量存储在程序的静态存储区而非栈上空间,静态数据成员按定义出现的先后顺序依次初始化,注意静态成员嵌套时,要保证所嵌套的成员已经初始化了。消除时的顺序是初始化的反顺序。
static 的优势:
可以节省内存,因为它是所有对象所公有的,因此,对多个对象来说,静态数据成员只存储一处,供所有对象共用。静态数据成员的值对每个对象都是一样,但它的 值是可以更新的。只要对静态数据成员的值更新一次,保证所有对象存取更新后的相同的值,这样可以提高时间效率。引用静态数据成员时,采用如下格式:
<类名>::<静态成员名>
如果静态数据成员的访问权限允许的话(即 public 的成员),可在程序中,按上述格式来引用静态数据成员。
Ps:
(1) 类的静态成员函数是属于整个类而非类的对象,所以它没有this指针,这就导致了它仅能访问类的静态数据和静态成员函数。
(2) 不能将静态成员函数定义为虚函数。
(3) 由于静态成员声明于类中,操作于其外,所以对其取地址操作,就多少有些特殊,变量地址是指向其数据类型的指针,函数地址类型是一个“nonmember 函数指针”。
(4) 由于静态成员函数没有 this 指针,所以就差不多等同于 nonmember 函数,结果就产生了一个意想不到的好处:成为一个 callback 函数,使得我们得以将 c++ 和 c-based x window 系统结合,同时也成功的应用于线程函数身上。
(5) static 并没有增加程序的时空开销,相反她还缩短了子类对父类静态成员的访问时间,节省了子类的内存空间。
(6) 静态数据成员在<定义或说明>时前面加关键字 static。
(7) 静态数据成员是静态存储的,所以必须对它进行初始化。
(8) 静态成员初始化与一般数据成员初始化不同:
初始化在类体外进行,而前面不加 static,以免与一般静态变量或对象相混淆;
初始化时不加该成员的访问权限控制符 private、public;
初始化时使用作用域运算符来标明它所属类;
所以我们得出静态数据成员初始化的格式:
<数据类型><类名>::<静态数据成员名>=<值>
(9) 为了防止父类的影响,可以在子类定义一个与父类相同的静态变量,以屏蔽父类的影响。这里有一点需要注意:我们说静态成员为父类和子类共享,但我们有重复定义了静态成员,这会不会引起错误呢?不会,我们的编译器采用了一种绝妙的手法:name-mangling 用以生成唯一的标志。
第四篇:
http://blog.csdn.net/rujielaisusan/article/details/4622197
内存分配方式
内存分配方式有三种:
[1] 从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量, static 变量。
[2] 在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中 ,效率很高,但是分配的内存容量有限。
[3] 从堆上分配,亦称动态内存分配 。程序在运行的时候用 malloc 或 new 申请任意多少的内存,程序员自己负责在何时用 free 或 delete 释放内存。动态内存的生存期由程序员决定 ,使用非常灵活,但如果在堆上分配了空间,就有责任回收它,否则运行的程序会出现内存泄漏,频繁地分配和释放不同大小的堆空间将会产生堆内碎块。
2. 程序的内存空间
一个程序将操作系统分配给其运行的内存块分为 4 个区域,如下图所示。
代码区 (code area) 程序内存空间
全局数据区 (data area)
堆区 (heap area)
栈区 (stack area)
一个由 C/C++ 编译的程序占用的内存分为以下几个部分 ,
1 、栈区( stack ) 由编译器自动分配释放 ,存放为运行函数而分配的局部变量、函数参数、返回数据、返回地址等。其操作方式类似于数据结构中的栈。
2 、堆区( heap ) 一般由程序员分配释放, 若程序员不释放,程序结束时可能由 OS 回收 。分配方式类似于链表。
3 、全局区(静态区)( static )存放全局变量、静态数据、常量。程序结束后有系统释放
4 、文字常量区 常量字符串就是放在这里的。 程序结束后由系统释放。
5 、程序代码区存放函数体(类成员函数和全局函数)的二进制代码。
下面给出例子程序,
int a = 0; // 全局初始化区
char *p1; // 全局未初始化区
int main() {
int b; // 栈
char s[] = /"abc/"; // 栈
char *p2; // 栈
char *p3 = /"123456/"; //123456//0 在常量区, p3 在栈上。
static int c =0;// 全局(静态)初始化区
p1 = new char[10];
p2 = new char[20];
// 分配得来得和字节的区域就在堆区。
strcpy(p1, /"123456/"); //123456//0 放在常量区,编译器可能会将它与 p3 所指向的 /"123456/" 优化成一个地方。
}
堆与栈的比较
1 申请方式
stack: 由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为 b 开辟空间。
heap: 需要程序员自己申请,并指明大小,在 C 中 malloc 函数, C++ 中是 new 运算符。
如 p1 = (char *)malloc(10); p1 = new char[10];
如 p2 = (char *)malloc(10); p2 = new char[20];
但是注意 p1 、 p2 本身是在栈中的。
2 申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表 ,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。
对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的 delete 语句才能正确的释放本内存空间。
由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
3 申请大小的限制
栈:在 Windows 下 , 栈是向低地址扩展的数据结构,是一块连续的内存的区域。 这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS 下,栈的大小是 2M (也有的说是 1M ,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示 overflow 。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
4 申请效率的比较
栈由系统自动分配,速度较快。但程序员是无法控制的 。
堆是由 new 分配的内存,一般速度比较慢,而且容易产生内存碎片 , 不过用起来最方便 。
另外,在 WINDOWS 下,最好的方式是用 VirtualAlloc 分配内存,他不是在堆,也不是栈,而是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。
5 堆和栈中的存储内容
栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的 C 编译器中,参数是由右往左入栈的 ,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。
6 存取效率的比较
char s1[] = /"a/";
char *s2 = /"b/";
a 是在运行时刻赋值的;而 b 是在编译时就确定的;但是,在以后的存取中,在栈上的数组比指针所指向的字符串( 例如堆 ) 快。 比如:
int main(){
char a = 1;
char c[] = /"1234567890/";
char *p =/"1234567890/";
a = c[1];
a = p[1];
return 0;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器 cl 中,而第二种则要先把指针值读到 edx 中,再根据 edx 读取字符,显然慢了。
7 小结
堆和栈的主要区别由以下几点:
1 、管理方式不同;
2 、空间大小不同;
3 、能否产生碎片不同;
4 、生长方向不同;
5 、分配方式不同;
6 、分配效率不同;
管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生 memory leak 。
空间大小:一般来讲在 32 位系统下,堆内存可以达到 4G 的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在 VC6 下面,默认的栈空间大小是 1M 。当然,这个值可以修改。
碎片问题:对于堆来讲,频繁的 new/delete 势必会造成内存空间的不连 续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内 存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构。
生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。
分配方式:堆都是动态分配的 ,没有静态分配的堆。栈有 2 种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由 malloca 函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现 。
分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是 C/C++ 函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构 / 操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。
从这里我们可以看到,堆和栈相比,由于大量 new/delete 的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址, EBP 和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。
虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。
无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果。
4.new/delete 与 malloc/free 比较
从 C++ 角度上说,使用 new 分配堆空间可以调用类的构造函数,而 malloc() 函数仅仅是一个函数调用,它不会调用构造函数,它所接受的参数是一个 unsigned long 类型。同样, delete 在释放堆空间之前会调用析构函数,而free 函数则不会。
class Time{
public:
Time(int,int,int,string);
~Time(){
cout<</"call Time/'s destructor by:/"<<name<<endl;
}
private:
int hour;
int min;
int sec;
string name;
};
Time::Time(int h,int m,int s,string n){
hour=h;
min=m;
sec=s;
name=n;
cout<</"call Time/'s constructor by:/"<<name<<endl;
}
int main(){
Time *t1;
t1=(Time*)malloc(sizeof(Time));
free(t1);
Time *t2;
t2=new Time(0,0,0,/"t2/");
delete t2;
system(/"PAUSE/");
return EXIT_SUCCESS;
}
结果:
call Time/'s constructor by:t2
call Time/'s destructor by:t2
从结果可以看出,使用 new/delete 可以调用对象的构造函数与析构函数,并且示例中调用的是一个非默认构造函数。但在堆上分配对象数组时,只能调用默认构造函数,不能调用其他任何构造函数
第五篇:
http://blog.csdn.net/loveyumomo/article/details/23244367
一、预备知识—程序的内存分配
一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。
二、例子程序
这是一个前辈写的,非常详细
//main.cpp
#include <stdio.h>
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456\0在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。
2.5堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。
2.6存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#i nclude
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。
下面是另一篇,总结的比上面好:
堆和栈的联系与区别dd
在bbs上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。
首先,我们举一个例子:
void f() { int* p=new int[5]; }
这条短短的一句话就包含了堆与栈,看到new,我们首先就应该想到,我们分配了一块堆内存,那么指针p呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针p。在程序会先确定在堆中分配内存的大小,然后调用operator new分配内存,然后返回这块内存的首地址,放入栈中,他在VC6下的汇编代码如下:
00401028 push 14h
0040102A call operator new (00401060)
0040102F add esp,4
00401032 mov dword ptr [ebp-8],eax
00401035 mov eax,dword ptr [ebp-8]
00401038 mov dword ptr [ebp-4],eax
这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是delete p么?澳,错了,应该是delete []p,这是为了告诉编译器:我删除的是一个数组,VC6就会根据相应的Cookie信息去进行释放内存的工作。
好了,我们回到我们的主题:堆和栈究竟有什么区别?
主要的区别由以下几点:
1、管理方式不同;
2、空间大小不同;
3、能否产生碎片不同;
4、生长方向不同;
5、分配方式不同;
6、分配效率不同;
管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。
空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改:
打开工程,依次操作菜单如下:Project->Setting->Link,在Category 中选中Output,然后在Reserve中设定堆栈的最大值和commit。
注意:reserve最小值为4Byte;commit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。
碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。
生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。
分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。
分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。
从这里我们可以看到,堆和栈相比,由于大量new/delete的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址,EBP和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。
虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。
无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果,就算是在你的程序运行过程中,没有发生上面的问题,你还是要小心,说不定什么时候就崩掉,那时候debug可是相当困难的:)
转:c++内存分配的更多相关文章
- 《深入理解Java虚拟机》内存分配策略
上节学习回顾 1.判断对象存活算法:引用计数法和可行性分析算法 2.垃圾收集算法:标记-清除算法.复制算法.标记-整理算法 3.垃圾收集器: Serial:新生代收集器,采用复制算法,单线程. Par ...
- Java的内存分配
java内存分配 A:栈 存储局部变量 B:堆 存储所有new出来的 C:方法区(方法区的内存中) 类加载时 方法信息保存在一块称为方法区的内存中, 并不随你创建对象而随对象保存于堆中; D:本地方法 ...
- C语言内存分配方法。
当C程序运行在操作系统上时,操作系统会给每一个程序分配一定的栈空间. 堆为所有程序共有的,需要时需要申请访问. 一.栈 局部变量.函数一般在栈空间中. 运行时自动分配&自动回收:栈是自动管理的 ...
- JVM内存分配策略
在 JVM内存垃圾回收方法 中,我们已经详细讨论了内存回收,但是,我们程序中生成的对象是如何进行分配的呢?以下所述针对的是HotSpot虚拟机. 1.Java堆结构 以HotSpot为例,如下图: H ...
- Java的垃圾回收和内存分配策略
本文是<深入理解Java虚拟机 JVM高级特性与最佳实践>的读书笔记 在介绍Java的垃圾回收方法之前,我们先来了解一下Java虚拟机在执行Java程序的过程中把它管理的内存划分为若干个不 ...
- Buddy内存分配算法
Buddy(伙伴的定义): 这里给出伙伴的概念,满足以下三个条件的称为伙伴:1)两个块大小相同:2)两个块地址连续:3)两个块必须是同一个大块中分离出来的: Buddy算法的优缺点: 1)尽管伙伴内存 ...
- 小白请教几个关于Java虚拟机内存分配策略的问题
最近在看周志明所著的<深入理解Java虚拟机>,有几个问题不太明白,希望对虚拟机有研究的哥们儿帮我解答一下.先说一下我进行试验的环境: 操作系统:Mac OS X 10.11.6 EI C ...
- Linux内核笔记--内存管理之用户态进程内存分配
内核版本:linux-2.6.11 Linux在加载一个可执行程序的时候做了种种复杂的工作,内存分配是其中非常重要的一环,作为一个linux程序员必然会想要知道这个过程到底是怎么样的,内核源码会告诉你 ...
- Linux内核笔记——内存管理之块内存分配
内核版本:linux-2.6.11 伙伴系统 伙伴系统是linux用于满足对不同大小块物理内存分配和释放请求的解决方案. 内存管理区 linux将物理内存分成三个内存管理区,分别为ZONE_DMA Z ...
- java中内存分配策略及堆和栈的比较
Java把内存分成两种,一种叫做栈内存,一种叫做堆内存 在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配.当在一段代码块中定义一个变量时,java就在栈中为这个变量分配内存空间 ...
随机推荐
- java文件上传到服务器
最近项目中使用到了文件从本地到服务器的功能.其实是为了解决目前浏览器不支持获取本地文件全路径.不得已而想到上传到服务器的固定目录,从而方便项目获取文件,进而使程序支持EXCEL批量导入数据. 在前台界 ...
- Gson心得小笔记
又和往常一样看项目的时候遇到了点新的东西,至少对我来说是个新的东西吧.Gson 废话不多说.个人认为Gson主要用来实现对象和json之间的转换. 例如有个person对象,想要把这个对象转化为jso ...
- 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...
- 山东理工大学第七届ACM校赛-飞花的鱼塘 分类: 比赛 2015-06-26 10:30 43人阅读 评论(0) 收藏
飞花的鱼塘 Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 一日,飞花壕在稷下湖游玩,忽然,飞花巨有了一个养鱼的想法,于是,他大手 ...
- 使用NPOI随意创建Excel(含下拉列表)
//创建工作簿 HSSFWorkbook ssfworkbook = new HSSFWorkbook(); //创建工作表(页) HSSFSheet sheet1 = ssfworkbook.Cre ...
- 【SQL】SQL中笛卡尔积、内连接、外连接的数据演示
SQL的查询语句中,常使用到内连接.外连接,以及连接的基础--笛卡尔积运算. 在简单的SQL中,也许我们还分辨清楚数据如何连接,一旦查询复杂了,脑子也犯浆糊了,迷迷糊糊的. 本文,简单以数据形式记录连 ...
- C语言培训第一天
下面是一些命令,先来谈谈今天的若干收获吧! 计算机中的一切文件都是以二进制补码的形式存在,问题也就来了. 第一个问题 如果我们给一个无符号的数赋值一个负数,他会读取到什么,又会输出什么?(似乎问题和上 ...
- Swift语法总结补充(一)
Swift基础语法学习总结Swift高级语法学习总结Swift语法总结补充(一) 1. 可选类型是一种类型,String?就是Optional<String>,所以函数参数也可以声明为它2 ...
- jquery之hide()用法详解
注: 以下函数用法和hide()类似 [参数类型完全一样] toggle() hide() show() slideToggle() slideUp() slideDown() fadeToggl ...
- XUnit的使用
安装: 通过NuGet获取XUnit的类库 实战使用 https://github.com/kerryjiang/SuperSocket.ProtoBase/tree/master/test