Area(Pick定理POJ1256)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 5429 | Accepted: 2436 |
Description
robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted.
Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight
walls are used. Figure 1 shows the course of a robot around an example area.

Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula
he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that
simple formula for you, so your first task is to find the formula yourself.
Input
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair
means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself
except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100
units.
Output
Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
- 2
- 4
- 1 0
- 0 1
- -1 0
- 0 -1
- 7
- 5 0
- 1 3
- -2 2
- -1 0
- 0 -3
- -3 1
- 0 -3
Sample Output
- Scenario #1:
- 0 4 1.0
- Scenario #2:
- 12 16 19.0
Source
- #include <set>
- #include <map>
- #include <list>
- #include <stack>
- #include <cmath>
- #include <vector>
- #include <queue>
- #include <string>
- #include <cstdio>
- #include <cstdlib>
- #include <cstring>
- #include <iostream>
- #include <algorithm>
- using namespace std;
- typedef long long LL;
- const double eps = 1e-5;
- int n,m;
- struct node
- {
- int x;
- int y;
- }Point[110];
- int GCD(int a,int b)//计算边缘上的点,不计起点(将两个点转化为向量,<strong>a</strong>=n<strong>b,</strong>每个向量都可由从起点起,第一个到达格点的点形成的向量组成,(想想为什么),n就是这个向量的x,y的GCD)
- {
- return b==0?a:GCD(b,a%b);
- }
- int area(node a,node b)//叉积计算面积
- {
- return a.x*b.y-a.y*b.x;
- }
- int main()
- {
- int T;
- int m;
- int w=1;
- scanf("%d",&T);
- while(T--)
- {
- scanf("%d",&m);
- int num=0;
- int ant=0;
- double ans=0;
- for(int i=0;i<m;i++)
- {
- scanf("%d %d",&Point[i].x,&Point[i].y);
- if(i)
- {
- Point[i].x+=Point[i-1].x;
- Point[i].y+=Point[i-1].y;
- num+=GCD(abs(Point[i].x-Point[i-1].x),abs(Point[i].y-Point[i-1].y));
- ans+=area(Point[i-1],Point[i]);
- }
- }
- num+=GCD(abs(Point[n-1].x-Point[0].x),abs(Point[n-1].y-Point[0].y));
- ans+=area(Point[m-1],Point[0]);
- if(ans<0)
- {
- ans=-ans;
- }
- ant=(int)(ans/2-(double)num/2+1);//pick定理
- printf("Scenario #%d:\n",w++);
- printf("%d %d %.1f\n\n",ant,num,ans/2);
- }
- return 0;
- }
Area(Pick定理POJ1256)的更多相关文章
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- POJ1265——Area(Pick定理+多边形面积)
Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...
- poj 1265 Area(pick定理)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- [poj 1265]Area[Pick定理][三角剖分]
题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...
- Area(pick定理)
http://poj.org/problem?id=1265 题意:起始为(0,0),给出每个点的偏移量,求依次连接这些点形成的多边形边界上格点的个数. 思路:先将各个点的坐标求出存入,由pick定理 ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
- poj 1265 Area(Pick定理)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5666 Accepted: 2533 Description ...
- POJ 1265 Area POJ 2954 Triangle Pick定理
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5227 Accepted: 2342 Description ...
随机推荐
- HashedWheelTimer
HashedWheelTimer 是根据 Hashed and Hierarchical Timing Wheels: Data Structuresfor the Efficient Impleme ...
- java程序运行时内存分配详解 (转)
转自:http://www.tuicool.com/articles/uU77v2 一. 基本概念 每运行一个java程序会产生一个java进程,每个java进程可能包含一个或者多个线程,每一个Ja ...
- yii遍历行下的每列数据(小1月考)
效果图: 控制器(1种): //显示列表 public function actionList() { //实例化对象 $model= new Qiu(); ...
- Mac配置环境变量(Java,Android,Gradle,Maven,Hosts)
JAVA_HOME 配置环境变量 # 使用vim打开.bash_profile文件,加入java环境变量 $ vim .bash_profile export JAVA_HOME=$(/usr/lib ...
- paper 54 :图像频率的理解
我一直在思考一个问题,图像增强以后,哪些方面的特征最为显著,思来想去,无果而终!翻看了一篇知网的paper,基于保真度(VIF)的增强图像质量评价,文章中指出无参考质量评价,可以从三个方面考虑:平均梯 ...
- paper 44 :颜色矩和颜色相关图(color correlogram)
- .scss写法及如何转化为.css
scss可视化工具:http://koala-app.com/index-zh.html scss讲解地址:http://www.cnblogs.com/adine/archive/2012/12/1 ...
- java 与 R 相互调用
https://www.r-project.org/ http://cos.name/2013/08/r-rjava-java/ http://blog.csdn.net/hwssg/article/ ...
- 3. 星际争霸之php设计模式--简单工厂模式
题记==============================================================================本php设计模式专辑来源于博客(jymo ...
- Javascript与C#编码解码
(一) Javascript与C#编码解码的对应关系 http://www.jb51.net/article/44062.htm 这篇文章主要是对JS与C#编码解码进行了详细的介绍,需要的朋友可以过来 ...