Description

Nothing is more beautiful than square! So, given a grid of cells, each cell being black or white, it is reasonable to evaluate this grid’s beautifulness by the side length of its maximum continuous subsquare which fully consists of white cells.
Now you’re given an N × N grid, and the cells are all black. You can paint some cells white. But other cells are broken in the sense that they cannot be paint white. For each integer i between 0 and N inclusive, you want to find the number of different painting schemes such that the beautifulness is exactly i. Two painting schemes are considered different if and only if some cells have different colors. Painting nothing is considered to be a scheme.

For example, N = 3 and there are 4 broken cells as shouwn in Fig. J(a). There are 2 painting schemes for i=2 as shown in Fig. J(b) and J(c).
You just need to output the answer modulo 10^9 + 7.
给你一个n * n(n <= 8)的棋盘,上面有一些格子必须是黑色,其它可以染
黑或者染白,对于一个棋盘,定义它的优美度为它上面最大的连续白色
子正方形的边长,对于每个0 <= i <= n,问有多少种染色方案使得棋盘的
优美度为i?

Input

The first line contains an integer T (T ≤ 10) denoting the number of the test cases.
For each test case, the first line contains an integer N (1 ≤ N ≤ 8), denoting the size of the grid is N × N . Then N lines follow, each line containing an N-character string of “o” and “*”, where “o” stands for a paintable cell and “*” for a broken cell.

Output

For each test case, for each integer i between 0 and N inclusive, output the answer in a single line.

类似插头dp,f[x][y][k][S]表示当前决策到第x行第y列,到目前为止最大白色正方形大小为k,轮廓线上状态为S的方案数

具体S表示以轮廓线上每个格子为右下角的最大白色正方形大小,这样若一个格子x,y决策为白色,则S(x,y)=min(S(x-1,y),S(x-1,y-1),S(x,y-1))+1,若黑色则S(x,y)=0

#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
int T,n;
char s[][];
const int M=,P=;
struct map{
int x[M],y[M],s[M],sp;
map(){
memset(y,-,sizeof y);
sp=;
}
void clear(){
for(;sp;y[s[--sp]]=-);
}
int&get(int a){
int w=a%M;
while(~y[w]){
if(x[w]==a)return y[w];
if((w+=)>=M)w-=M;
}
x[w]=a;s[sp++]=w;
return y[w];
}
}_m1,_m2,*m1=&_m1,*m2=&_m2;
std::queue<int>q1,q2;
void upd(int x,int y){
int&w=m2->get(x);
if(w==-)w=,q2.push(x);
if((w+=y)>=P)w-=P;
}
void mins(int&a,int b){if(a>b)a=b;}
int ans[];
void cal(){
for(int i=;i<=n;++i)ans[i]=;
upd(,);
for(int i=;i<n;++i){
for(int j=;j<n;++j){
std::swap(q1,q2);
std::swap(m1,m2);
m2->clear();
while(!q1.empty()){
int w=q1.front();q1.pop();
int v=m1->get(w);
upd(w&~(<<j*),v);
if(s[i][j]=='o'){
int a=w>>j*&,b=w>>n*+&;
if(j)mins(a,w>>j*-&);
mins(a,w>>j*+&);
++a;
if(a<)upd((w&~(<<j*)|(a<<j*))+(a>b?<<n*+:),v);else ++ans[];
}
}
}
std::swap(q1,q2);
std::swap(m1,m2);
m2->clear();
while(!q1.empty()){
int w=q1.front();q1.pop();
int v=m1->get(w);
if(i!=n-)upd(w&(<<n*+)|(w&(<<n*)-)<<,v);
else (ans[w>>n*+]+=v)%=P;
}
}
for(int i=;i<=n;++i)printf("%d\n",ans[i]);
}
int main(){
for(scanf("%d",&T);T;--T){
scanf("%d",&n);
for(int i=;i<n;++i)scanf("%s",s[i]);
cal();
}
return ;
}

bzoj3905: Square的更多相关文章

  1. [LeetCode] Matchsticks to Square 火柴棍组成正方形

    Remember the story of Little Match Girl? By now, you know exactly what matchsticks the little match ...

  2. [LeetCode] Valid Word Square 验证单词平方

    Given a sequence of words, check whether it forms a valid word square. A sequence of words forms a v ...

  3. [LeetCode] Valid Perfect Square 检验完全平方数

    Given a positive integer num, write a function which returns True if num is a perfect square else Fa ...

  4. [LeetCode] Maximal Square 最大正方形

    Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...

  5. OPEN CASCADE Gauss Least Square

    OPEN CASCADE Gauss Least Square eryar@163.com Abstract. The least square can be used to solve a set ...

  6. OpenCascade Eigenvalues and Eigenvectors of Square Matrix

    OpenCascade Eigenvalues and Eigenvectors of Square Matrix eryar@163.com Abstract. OpenCascade use th ...

  7. Leetcode: Matchsticks to Square && Grammar: reverse an primative array

    Remember the story of Little Match Girl? By now, you know exactly what matchsticks the little match ...

  8. Leetcode: Valid Word Square

    Given a sequence of words, check whether it forms a valid word square. A sequence of words forms a v ...

  9. Modified Least Square Method and Ransan Method to Fit Circle from Data

    In OpenCv, it only provide the function fitEllipse to fit Ellipse, but doesn't provide function to f ...

随机推荐

  1. HTTP详解(3)-http1.0 和http1.1 区别

    HTTP详解(3)-http1.0 和http1.1 区别 分类: 网络知识2013-03-17 16:51 1685人阅读 评论(0) 收藏 举报   目录(?)[+]   翻了下HTTP1.1的协 ...

  2. spark Streaming的Receiver和Direct的优化对比

    Direct 1.简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作.Spark会创建跟Kafka partition一样多的RDD part ...

  3. U盘

    U盘里的.Trashes是什么文件,要怎么去掉?为什么会出现这个文件? 这是苹果电脑的垃圾文件. 1.在苹果电脑上删除文件后,没有清空回收站,就会留下这些文件. 2.可以重新插入Mac, 然后会发现T ...

  4. mysql中slow query log慢日志查询分析

    在mysql中slow query log是一个非常重要的功能,我们可以开启mysql的slow query log功能,这样就可以分析每条sql执行的状态与性能从而进行优化了. 一.慢查询日志 配置 ...

  5. 修改host文件屏蔽视频广告和网站

    很多时候我们会需要屏蔽一些网站或者广告,类似XX网站,下木马病毒的网站,或者破解软件的时候.我们可以使用一些软件屏蔽,我这里是用windows系统自带的hosts文件来屏蔽的.这个文件有点类似精简版的 ...

  6. *** 安全沙箱冲突 *** 到 127.0.0.1:9999 的连接已停止 - 不允许从 file:///E:/flash/Flash/Vod/tag/Letvcloud__MainVodNew/bin-debug/Player.swf 进行连接

    http://bbs.9ria.com/thread-69309-1-1.html C:\Windows\System32\Macromed\Flash\NPSWF64_21_0_0_242.dll ...

  7. git 教程 ,常用命令

    Git使用手册 http://www.cnblogs.com/lantingji/p/5942721.html git官网 https://git-scm.com/ Git的奇技淫巧 http://w ...

  8. Python-属性(property)

    在2.6版本中,添加了一种新的类成员函数的访问方式--property. 原型 class property([fget[, fset[, fdel[, doc]]]]) fget:获取属性 fset ...

  9. oracle中如何指定表字段自增

    背景介绍: SQL SERVER可以在int类型的字段后加上identity(1,1),该字段就会从1开始,按照+1的方式自增,将这个字段设置为主键,有利于我们进行数据的插入操作.MySql中可以使用 ...

  10. MySQL 日志管理详解

    大纲 一.日志分类 二.日志详解 注:MySQL版本,Mysql-5.5.32(不同版本的mysql变量有所不同) 一.日志分类 错误日志 查询日志 慢查询日志 二进制日志 中继日志 事务日志 滚动日 ...