RDD的检查点

  首先,要清楚。为什么spark要引入检查点机制?引入RDD的检查点?

    答:如果缓存丢失了,则需要重新计算。如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的。为了避免缓存丢失重新计算带来的开销,Spark又引入检查点机制。

RDD的缓存能够在第一次计算完成后,将计算结果保存到内存、本地文件系统或者Tachyon(分布式内存文件系统)中。通过缓存,Spark避免了RDD上的重复计算,能够极大地提升计算速度。但是,如果缓存丢失了,则需要重新计算。如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的。为了避免缓存丢失重新计算带来的开销,Spark又引入检查点(checkpoint)机制。

RDD的缓存和RDD的checkpoint的区别

缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存、本地文件系统和Tachyon)写入不同的介质。

而检查点不同,它是在计算完成后,重新建立一个Job来计算。

为了避免重复计算,推荐先将RDD缓存,这样就能保证检查点的操作可以快速完成。

 

RDD的checkpoint的处理

  

  在缓存没有命中的情况下,首先会判断是否保存了RDD的checkpoint,如果有,则读取checkpoint。为了理解checkpoint的RDD是如何读取计算结果的,需要先看一下checkpoint的数据是如何写入的。
  首先在Job结束后,会判断是否需要checkpoint。如果需要,就调用org.apache.spark.rdd.RDDCheckpointData#doCheckpoint。doCheckpoint首先为数据创建一个目录;然后启动一个新的Job来计算,并且将计算结果写入新创建的目录;接着创建一个org.apache.spark.rdd.CheckpointRDD;最后,原始RDD的所有依赖被清除,这就意味着RDD的转换的计算链(compute chain)等信息都被清除。这个处理逻辑中,数据写入的实现在org.apache.spark.rdd.CheckpointRDD$#writeToFile。简要的核心逻辑如下:

//
创建一个保存
checkpoint
数据的目录
val path = new Path(rdd.context.checkpointDir.get, "rdd-" + rdd.id)
val fs = path.getFileSystem(rdd.context.hadoopConfiguration)

if (!fs.mkdirs(path)) {
throw new SparkException("Failed to create checkpoint path " + path)
}
//
创建广播变量
val broadcastedConf = rdd.context.broadcast(
new SerializableWritable(rdd.context.hadoopConfiguration))
//
开始一个新的

Job
进行计算,计算结果存入路径
path

rdd.context.runJob(rdd, CheckpointRDD.writeToFile[T](path.toString, broadcastedConf) _)
//
根据结果的路径
path
来创建

CheckpointRDD
val newRDD = new CheckpointRDD[T](rdd.context, path.toString)
//
保存结果,清除原始
RDD
的依赖、
Partition
信息等
RDDCheckpointData.synchronized {

cpFile = Some(path.toString)
cpRDD = Some(newRDD) // RDDCheckpointData
对应的
CheckpointRDD
rdd.markCheckpointed(newRDD)   //
清除原始
RDD
的依赖,
Partition

cpState = Checkpointed         //
标记
checkpoint
的状态为完成
}

至此,RDD的checkpoint完成,其中checkpoint的数据可以通过checkpointRDD的readFromFile读取。但是,上述逻辑在清除了RDD的依赖后,并没有和check-pointRDD建立联系,那么Spark是如何确定一个RDD是否被checkpoint了,而且正确读取checkpoint的数据呢?
答案就在org.apache.spark.rdd.RDD#dependencies的实现,它会首先判断当前的RDD是否已经Checkpoint过,如果有,那么RDD的依赖就变成了对应的Ch

eckpointRDD:
privatedefcheckpointRDD: Option[RDD[T]]=checkpointData.flatMap(_.checkpointRDD)
final def dependencies: Seq[Dependency[_]] = {
checkpointRDD.map(r => List(new OneToOneDependency(r))).getOrElse {
if (dependencies_ == null) { //
没有
checkpoint
dependencies_ = getDependencies
}

dependencies_
}
}
理解了Checkpoint的实现过程,接下来看一下computeOrReadCheckpoint的实现。前面提到了,它一共在两个地方被调用,org.apache.spark.rdd.RDD#iterator和org.apache.spark.CacheManager#getOrCompute。它实现的逻辑比较简单,首先检查当前RDD是否被Checkpoint过,如果有,读取Checkpoint的数据;否则开始计算。实现如下:
private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext)
: Iterator[T] =

{
if (isCheckpointed) firstParent[T].iterator(split, context) else compute(split, context)
}
firstParent[T].iterator(split,context)会调用对应CheckpointRDD的iterator,最终调用到它的compute:
override def compute(split: Partition, context: TaskContext): Iterator[T] = {
val file=new Path(checkpointPath, CheckpointRDD.splitIdToFile(split.index))
CheckpointRDD.readFromFile(file, broadcastedConf, context) //

读取
Checkpoint
的数据
}

RDD的缓存

Spark RDD概念学习系列之RDD的checkpoint(九)的更多相关文章

  1. Spark RDD概念学习系列之RDD的缓存(八)

      RDD的缓存 RDD的缓存和RDD的checkpoint的区别 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon) ...

  2. Spark RDD概念学习系列之RDD的转换(十)

    RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的 ...

  3. Spark RDD概念学习系列之RDD的操作(七)

    RDD的操作 RDD支持两种操作:转换和动作. 1)转换,即从现有的数据集创建一个新的数据集. 2)动作,即在数据集上进行计算后,返回一个值给Driver程序. 例如,map就是一种转换,它将数据集每 ...

  4. Spark RDD概念学习系列之RDD是什么?(四)

       RDD是什么? 通俗地理解,RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的.详细见  Spark的数据存储 Spark的核心数据模型是RDD,但RDD是个抽象类 ...

  5. Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)

    RDD的依赖关系?   RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...

  6. Spark RDD概念学习系列之RDD的缺点(二)

        RDD的缺点? RDD是Spark最基本也是最根本的数据抽象,它具备像MapReduce等数据流模型的容错性,并且允许开发人员在大型集群上执行基于内存的计算. 为了有效地实现容错,(详细见ht ...

  7. Spark RDD概念学习系列之rdd的依赖关系彻底解密(十九)

    本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Tra ...

  8. Spark RDD概念学习系列之rdd持久化、广播、累加器(十八)

    1.rdd持久化 2.广播 3.累加器 1.rdd持久化 通过spark-shell,可以快速的验证我们的想法和操作! 启动hdfs集群 spark@SparkSingleNode:/usr/loca ...

  9. Spark RDD概念学习系列之RDD的创建(六)

    RDD的创建  两种方式来创建RDD: 1)由一个已经存在的Scala集合创建 2)由外部存储系统的数据集创建,包括本地文件系统,还有所有Hadoop支持的数据集,比如HDFS.Cassandra.H ...

随机推荐

  1. VIM移动

    VIM移动   断断续续的使用VIM也一年了,会的始终都是那么几个命令,效率极低 前几个星期把Windows换成了Linux Mint,基本上也稳定了下来 就今晚,我已经下定决心开始新的VIM之旅,顺 ...

  2. 编译Apache Hadoop2.2.0源代码

    Hadoop2的学习资料很少,只有官网的少数文档.如果想更深入的研究hadoop2,除了仅看官网的文档外,还要学习如何看源码,通过不断的调试跟踪源码,学习hadoop的运行机制. 1.安装CentOS ...

  3. Enable test automation in Testlink

    Enabling Test Automation in Testlink   Step 1: Change config settings in testlink config file Edit c ...

  4. Codeforces Round #272 (Div. 2) C. Dreamoon and Sums (数学 思维)

    题目链接 这个题取模的时候挺坑的!!! 题意:div(x , b) / mod(x , b) = k( 1 <= k <= a).求x的和 分析: 我们知道mod(x % b)的取值范围为 ...

  5. UVa 12100 (模拟) Printer Queue

    用一个队列模拟,还有一个数组cnt记录9个优先级的任务的数量,每次找到当前最大优先级的任务然后出队,并及时更新cnt数组. #include <iostream> #include < ...

  6. [转帖]在RDLC中使用外部图片

    原文链接:http://blog.csdn.net/rock870210/article/details/4559962 在RDLC中使用外部图片 2009-09-16 19:08 3416人阅读 评 ...

  7. UISegment

    UISegment分段控制 属性 1.segmentedControlStyle 设置segment的显示样式. typedef NS_ENUM(NSInteger, UISegmentedContr ...

  8. 20160122.CCPP详解体系(0001天)

    程序片段(01):Hello.c 内容概要:HelloWorld //01.#include表示包含的作用: // (1).<>:表示只在系统目录之下进行查找 // (2)."& ...

  9. 12月2日,上海Cloud Foundry Summit, Azure Cloud Foundry 团队期待和你见面!

    12月2日,上海Cloud Foundry Summit, Azure Cloud Foundry 团队期待和你见面! 12日2日对中国Cloud Foundry的用户和开源社区来说,是极有意义的一天 ...

  10. PL/SQL 下邮件发送程序

    对DBA而言,尽管在os级别下发送邮件是轻而易举的事情,然而很多时候我们也需要在PL/SQL中来发送邮件,比如监控job的执行状况等.本文根据网友(源作者未考证)的代码将其改装并封装到了package ...