Graph

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 1927    Accepted Submission(s): 965

Problem Description
Everyone
knows how to calculate the shortest path in a directed graph. In fact,
the opposite problem is also easy. Given the length of shortest path
between each pair of vertexes, can you find the original graph?
 
Input
The first line is the test case number T (T ≤ 100).
First line of each case is an integer N (1 ≤ N ≤ 100), the number of vertexes.
Following N lines each contains N integers. All these integers are less than 1000000.
The jth integer of ith line is the shortest path from vertex i to j.
The ith element of ith line is always 0. Other elements are all positive.
 
Output
For
each case, you should output “Case k: ” first, where k indicates the
case number and counts from one. Then one integer, the minimum possible
edge number in original graph. Output “impossible” if such graph doesn't
exist.

 
Sample Input
3
3
0 1 1
1 0 1
1 1 0
3
0 1 3
4 0 2
7 3 0
3
0 1 4
1 0 2
4 2 0
 
Sample Output
Case 1: 6
Case 2: 4
Case 3: impossible
 
Source
 
 
题意:  给你一些顶点的最短距离,要你求出原图最少含有多少边。
我们知道,最短路所构成的图已经是最少的边。所以只需要用n个点构成的有向边的和n*(n-1)减去那些合成的边。就是最少的边。
采用floy算法,松弛度来勾结一个最短图...
代码:
 #include<cstdio>
#include<cstring>
#define maxn 110
int ds[maxn][maxn];
bool vis[maxn][maxn];
int mat[maxn][maxn];
void floyd(int n)
{
for(int k=;k<n;k++)
{
for(int i=;i<n;i++)
{
if(i==k) continue;
for(int j=;j<n;j++)
{
if(k==j)continue;
if(ds[i][j]>=ds[i][k]+ds[k][j])
{
vis[i][j]=;
ds[i][j]=ds[i][k]+ds[k][j];
}
}
}
}
}
int main()
{
int cas,n;
scanf("%d",&cas);
for(int tt=;tt<=cas;tt++)
{
scanf("%d",&n);
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
scanf("%d",mat[i]+j);
ds[i][j]=mat[i][j];
}
memset(vis,,sizeof(vis));
floyd(n);
int res=;
bool tag=;
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
if(vis[i][j]&&ds[i][j]==mat[i][j])
res++;
else if(ds[i][j]<mat[i][j])
{
tag=;
break;
}
}
if(tag)break;
}
printf("Case %d: ",tt);
if(tag)
printf("impossible\n");
else printf("%d\n",n*(n-)-res); }
return ;
}

hdu 4034 Graph (floyd的深入理解)的更多相关文章

  1. HDU 4034 Graph(Floyd变形——逆向判断)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4034 Problem Description Everyone knows how to calcu ...

  2. HDU 4034 Graph Floyd最短路

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4034 题意: 给你一个最短路的表,让你还原整个图,并使得边最少 题解: 这样想..这个表示通过floy ...

  3. HDU 4034 Graph(floyd,最短路,简单)

    题目 一道简单的倒着的floyd. 具体可看代码,代码可简化,你有兴趣可以简化一下,就是把那个Dijsktra所实现的功能放到倒着的floyd里面去. #include<stdio.h> ...

  4. hdu 4034 Graph floyd

    题目链接 给出一个有向图各个点之间的最短距离, 求出这个有向图最少有几条边, 如果无法构成图, 输出impossible. folyd跑一遍, 如果dp[i][j] == dp[i][k]+dp[k] ...

  5. HDU 4034 Graph:反向floyd

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4034 题意: 有一个有向图,n个节点.给出两两节点之间的最短路长度,问你原图至少有多少条边. 如果无解 ...

  6. hdu 4034 Graph(逆向floyd)

    floyd的松弛部分是 g[i][j] = min(g[i][j], g[i][k] + g[k][j]);也就是说,g[i][j] <= g[i][k] + g[k][j] (存在i-> ...

  7. hdu 4034 Graph

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4034 题目分类:图论 题意:n个顶点,然后给出从i到j的最短路径长度,求至少需要哪些边 第二组样例 第 ...

  8. Codeforce 295B Greg and Graph(Floyd的深入理解)

    题目链接:http://codeforces.com/problemset/problem/295/B 题目大意:给出n个点的完全有权有向图,每次删去一个点,求删掉该点之前整张图各个点的最短路之和(包 ...

  9. [la P5031&hdu P3726] Graph and Queries

    [la P5031&hdu P3726] Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: ...

随机推荐

  1. 。JavaSE------初识Java

    我的老师告诉我,命运眷顾有志者,天道酬勤. 有时在梦里幻想的再多终究也只是梦, 不如脚踏实地一步步往前走来的踏实. ------------------------------------------ ...

  2. netsh winsock reset 11003

    netsh winsock reset 11003 http://files.cnblogs.com/xsmhero/winsock.zip

  3. [转]Unity3D:Gizmos画圆(原创)

    using UnityEngine; using System; public class HeGizmosCircle : MonoBehaviour { public Transform m_Tr ...

  4. Python操作文件、文件夹、字符串

    Python 字符串操作 去空格及特殊符号 s.strip().lstrip().rstrip(',') 复制字符串 #strcpy(sStr1,sStr2) sStr1 = 'strcpy' sSt ...

  5. DISPLAY_ITEM built-in in Oracle D2k Forms

    DISPLAY_ITEM built-in in Oracle D2k Forms DescriptionMaintained for backward compatibility only. For ...

  6. Limiting To Select Only 5 Check Boxes Out Of Ten In Oracle Forms

    Suppose you want to give an option to user to select only 5 check boxes from given any number of che ...

  7. [SAP ABAP开发技术总结]客户端文本文件、Excel文件上传下载

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  8. C# 线程(一)

    From : http://www.cnblogs.com/miniwiki/archive/2010/06/18/1760540.html 文章系参考转载,英文原文网址请参考:http://www. ...

  9. Scrum Meeting---One(2015-10-20)

    一.scrum meeting 在上周六我们团队进行了一次会议,讨论了我们团队的项目以及项目分工.首先是确立我们的项目,在团队的激烈讨论下我们决定做一个校园相关的APP.然后对于这个项目我们大致进行了 ...

  10. html5 drap & drop

    小知识点记录一下:onselectstart,onselect 1.onselectstart 该js方法是用来控制盒中内容是否被允许选中 <head> <style> #tm ...