cf------(round)#1 C. Ancient Berland Circus(几何)
2 seconds
64 megabytes
standard input
standard output
Nowadays all circuses in Berland have a round arena with diameter 13 meters, but in the past things were different.
In Ancient Berland arenas in circuses were shaped as a regular (equiangular) polygon, the size and the number of angles could vary from one circus to another. In each corner of the arena there was a special pillar, and the rope strung between the pillars marked the arena edges.
Recently the scientists from Berland have discovered the remains of the ancient circus arena. They found only three pillars, the others were destroyed by the time.
You are given the coordinates of these three pillars. Find out what is the smallest area that the arena could have.
The input file consists of three lines, each of them contains a pair of numbers –– coordinates of the pillar. Any coordinate doesn't exceed 1000 by absolute value, and is given with at most six digits after decimal point.
Output the smallest possible area of the ancient arena. This number should be accurate to at least 6 digits after the decimal point. It's guaranteed that the number of angles in the optimal polygon is not larger than 100.
0.000000 0.000000
1.000000 1.000000
0.000000 1.000000
1.00000000 这道题的题意是: 以一个场地遗迹,呈现多边形,但是不知道具体是几边形,只知道他的三个点,求能包含这三个点的最小多边形的面积:
对于这样的题目: 思路为:
先求出他的外接圆,得到外接圆的半径rr.
(1外接圆的求法:
{
(1) 有给定的坐标我们不难求出三条边的边长,rea,reb,rec;
(2) 又海伦公式得到三角形的面积: 周长cc=(rea+reb+rec)/2.0 面积等于: ss=sqrt(cc*(cc-rea)*(cc-reb)*(cc-rec));
(3) rr=rea*reb*rec/(4*ss); //证明就不详细说了
}
得到外接园的半径之后:
我们再来求出每一条边对应的圆心角a,b,c;
求出a,b,c圆心角的最大公约数st;
这样我们就可以知道他是边数: 2*pi/st;
所以得到最小单位的三角形的面积为Area=rr*rr*sin(st)/2;
总面积只需再剩上他的边数就可以得到.....
代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const double PI = 3.1415926535;
const double esp=0.01;
struct node{
double x,y;
//求两点之间的长度
double solen(node a){
return sqrt((a.x-x)*(a.x-x)+(a.y-y)*(a.y-y));
}
};
double dgcd(double a,double b) //最小公倍数
{
if(a<esp) return b;
if(b<esp) return a;
return dgcd(b,fmod(a,b));
}
int main()
{
node a,b,c;
double rea,reb,rec,Area;
double angle[]; //角度
//freopen("test.in","r",stdin);
scanf("%lf%lf%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y);
rea=a.solen(b);
reb=a.solen(c);
rec=b.solen(c);
//又海伦公式
double cc=(rea+reb+rec)/2.0;
Area=sqrt(cc*(cc-rea)*(cc-reb)*(cc-rec));
//求得外接圆半径r
double rr=rea*reb*rec/(*Area);
angle[]=acos(-rea*rea/(*rr*rr));
angle[]=acos(-reb*reb/(*rr*rr));
angle[]=*PI-angle[]-angle[];
//求出角之间的最大公约数
double ff=angle[];
for(int i=;i<;i++)
ff=dgcd(ff,angle[i]);
//求得是多少边行
printf("%.6lf\n",(rr*rr*PI*sin(ff))/ff);
return ;
}
cf------(round)#1 C. Ancient Berland Circus(几何)的更多相关文章
- Codeforces Beta Round #1 C. Ancient Berland Circus 计算几何
C. Ancient Berland Circus 题目连接: http://www.codeforces.com/contest/1/problem/C Description Nowadays a ...
- codforces 1C Ancient Berland Circus(几何)
题意 给出正多边形上三个点的坐标,求正多边形的最小面积 分析 先用三边长求出外接圆半径(海伦公式),再求出三边长对应的角度,再求出三个角度的gcd,最后答案即为\(S*2π/gcd\),S为gcd对应 ...
- AC日记——codeforces Ancient Berland Circus 1c
1C - Ancient Berland Circus 思路: 求出三角形外接圆: 然后找出三角形三条边在小数意义下的最大公约数; 然后n=pi*2/fgcd; 求出面积即可: 代码: #includ ...
- CodeForces - 1C:Ancient Berland Circus (几何)
Nowadays all circuses in Berland have a round arena with diameter 13 meters, but in the past things ...
- 「CF1C Ancient Berland Circus」
CF第一场比赛的最后一题居然是计算几何. 这道题的考点也是比较多,所以来写一篇题解. 前置芝士 平面直角坐标系中两点距离公式:\(l=\sqrt{(X_1-X_2)^2+(Y_1-Y_2)^2}\) ...
- Codeforces 1C Ancient Berland Circus
传送门 题意 给出一正多边形三顶点的坐标,求此正多边形的面积最小值. 分析 为了叙述方便,定义正多边形的单位圆心角u为正多边形的某条边对其外接圆的圆心角(即外接圆的某条弦所对的圆心角). (1)多边形 ...
- C. Ancient Berland Circus(三点确定最小多边形)
题目链接:https://codeforces.com/problemset/problem/1/C 题意:对于一个正多边形,只给出了其中三点的坐标,求这个多边形可能的最小面积,给出的三个点一定能够组 ...
- Codeforces 1 C. Ancient Berland Circus-几何数学题+浮点数求gcd ( Codeforces Beta Round #1)
C. Ancient Berland Circus time limit per test 2 seconds memory limit per test 64 megabytes input sta ...
- CF round #622 (div2)
CF Round 622 div2 A.简单模拟 B.数学 题意: 某人A参加一个比赛,共n人参加,有两轮,给定这两轮的名次x,y,总排名记为两轮排名和x+y,此值越小名次越前,并且对于与A同分者而言 ...
随机推荐
- VMware ESXI5.0的安装配置 zz
http://www.hotxf.com/thread-297-1-1.html 1, Vmware ESXI 光盘一张文件大小290M,本教程是以 5.0为案例. 2, 所需要安装的操作 ...
- LeetCode-Repeated DNA
关于位操作符.如<<, value << num ,其中,num指定要位移值value移动的位数,每左移一个位,高阶位都被移出(直接丢掉),并用0填充右边.. 道理明明很简单啊 ...
- Bug2算法的实现(RobotBASIC环境中仿真)
移动机器人智能的一个重要标志就是自主导航,而实现机器人自主导航有个基本要求--避障.之前简单介绍过Bug避障算法,但仅仅了解大致理论而不亲自动手实现一遍很难有深刻的印象,只能说似懂非懂.我不是天才,不 ...
- Django serializers 序列化 rest_framework
参考官方文档1(你懂的):http://www.django-rest-framework.org/api-guide/serializers/ 参考官方文档2(你懂的):http://www.dja ...
- [HDOJ1016]Prime Ring Problem
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1016 原题: A ring is compose of n circles as shown in d ...
- 10.Properties
The common language runtime (CLR) offers two kinds of properties: 1.parameterless properties, which ...
- 7.mybatis一对多关联查询
和第5节一对一查询类似,但是不同的是,一对一使用的是association,而一对多使用collection. 实例: 1个班级Class,对应1个老师Teacher,对应多个学生Student 1. ...
- 本地设置正常,放服务器上就报 System.Security系统找不到指定的文件解决方法
在应用程序池设置中将“加载用户配置文件”(Load User Profile)设置为true,问题就解决.
- hdu 1023 卡特兰数+高精度
Train Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- Linux内核OOM机制的详细分析(转)
Linux 内核 有个机制叫OOM killer(Out-Of-Memory killer),该机制会监控那些占用内存过大,尤其是瞬间很快消耗大量内存的进程,为了 防止内存耗尽而内核会把该进程杀掉.典 ...