前言:无聊才翻翻看看来复习啦。。所以慢更(●'◡'●)

1.利用求和公式的性质推导:

\[\sum^{n}_{k=1}k=n
\]

\[\sum^{n}_{k=1}k^2=\frac{n(n+1)(2n+1)}{6}
\]

\[\sum^{n}_{k=1}k^3={(\frac{n(n+1)}{2})}^2
\]

由数学归纳法,\(\sum^n_{k=1}k^p\)可以表示成\(n\)的\(p+1\)次多项式,其最高次项的系数为\(\frac{1}{p+1}\),常数项为0.

2.AM-GM inequality

\[\frac{x_1+x_2+...+x_n}{n}\geq\sqrt[n]{x_1x_2...x_n}
\]

3.涉及三角函数的不等式

\[sinx<x<tanx, \forall x\in(0,\frac{\pi}{2})
\]

\[|sinx|\leq|x|, \forall x\in\mathbb{R}
\]

4.Bernoulli inequality

\[(1+x)^n=1+nx+\frac{n(n-1)}{2}x^2+...+x^n
\]

therefore,

\[(1+x)^n\geq 1+nx
\]

5.有界序列和无穷小序列的性质。

(1)无穷小序列必为有界序列

(2)两个有界序列之积为有界序列【实数与无穷小序列之积也ok】

(3)两个无穷小序列之和为无穷小序列【推广到有限个也可以】

(4)无穷小序列与有界序列之积为无穷小序列

(5)两个无穷小序列之积还是无穷小序列【由(1)(4)可得】

(6){\(a_n\)}为无穷小序列\(\iff\) {\(|a_n|\)}为无穷小序列

数学分析新讲(1) NOTE的更多相关文章

  1. 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书

    1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...

  2. 宜宾1178.9873(薇)xiaojie:宜宾哪里有xiaomei

    宜宾哪里有小姐服务大保健[微信:1178.9873倩儿小妹[宜宾叫小姐服务√o服务微信:1178.9873倩儿小妹[宜宾叫小姐服务][十微信:1178.9873倩儿小妹][宜宾叫小姐包夜服务][十微信 ...

  3. ASP.NET MVC系列:为已有模型添加新的属性

    在模型类Movie中添加一个新的属性Rating

  4. QtQuick桌面应用程序开发指导 3)达到UI而功能_B 4)动态管理Note物_A

    3.2 把Page Item和Marker Item绑定 之前我们实现了PagePanel组件, 使用了三个state来切换Page组件的opacity属性; 这一步我们会使用Marker和Marke ...

  5. 萌新笔记之堆(heap)

    前言(萌新感想): 以前用STL的queue啊stack啊priority_queue啊,一直很想懂原理,现在终于课上到了priority_queue,还有就是下周期中考,哈哈,所以写几篇blog总结 ...

  6. FFT IP核调用与仿真之FFT数学分析

    对于FFT这个IP核,我其实对它真的是又爱又恨,因为它真的耗费了我太多时间,但是随着研究的深入,遇到的问题一点点给消化解决,终于不用带着问题睡觉了,哈哈,有时候真的挺佩服自己的,遇到不懂的,不了解的, ...

  7. ADO.NET - 全面梳理

    转自:http://www.cnblogs.com/yangcaogui/archive/2012/06/09/2537086.html 目录: 简单的介绍下ADO.NET SqlConnection ...

  8. 类 this指针 const成员函数

    C++ Primer 第07章 类 7.1.2 ​Sales_data类的定义如下: #ifndef SALES_DATA_H #define SALES_DATA_H #include <st ...

  9. Django项目实践4 - Django站点管理(后台管理员)

    http://blog.csdn.net/pipisorry/article/details/45079751 上篇:Django项目实践3 - Django模型 Introduction 对于某一类 ...

随机推荐

  1. pytorch GPU训练好的模型使用CPU加载

    torch.load('tensors.pt') # 把所有的张量加载到CPU中 torch.load('tensors.pt', map_location=lambda storage, loc: ...

  2. php的一个有意思的命令:-S

    php -S localhost:8188 /web 会启动一个监控IP:PORT 的http服务,算是简易的web服务器吧.基本上,实现了PHP+MySQL就可以建立一个简易测试网站的环境.

  3. Java ASM学习(2)

    1.编译后的方法区,其中存储的代码都是一些字节码指令 2.Java虚拟机执行模型: java代码是在一个线程内部执行,每个线程都有自己的执行栈,栈由帧组成,每个帧表示一个方法的调用,每调用一个方法,都 ...

  4. Git基本操作和使用

    基本命令: git config git init git clone git remote git fetch git commit git rebase git push 本地基本操作: git ...

  5. tp5.0--多个条件查询全部数据

    用where来查询的话(非主键): 查找:

  6. Spring Boot Starters介绍

    文章目录 Web Start Test Starter Data JPA Starter Mail Starter 结论 对于任何一个复杂项目来说,依赖关系都是一个非常需要注意和消息的方面,虽然重要, ...

  7. python 列表加法"+"和"extend"的区别

    相同点 : "+"和"extend"都能将两个列表成员拼接到到一起 不同点 :   + : 生成的是一个新列表(id改变) extend : 是将一个列表的成员 ...

  8. spring-boot下mybatis的配置

    问题描述:spring boot项目想添加mybatis的配置,在src/main/resources目录下新建了mybatis-config.xml文件,在application.propertie ...

  9. 如何在 Amazon AWS 上设置一台 Linux 服务器

    摘要: AWS(Amazon Web Services)是全球领先的云服务器提供商之一.你可以使用 AWS 平台在一分钟内设置完服务器.在 AWS 上,你可以微调服务器的许多技术细节,如 CPU 数量 ...

  10. 解析.xml并保存结点信息至.txt中

    @ 思路 利用java开源库dom4j解析.xml: dom4j操作xml - 读取xml,生成一个document实例: SAXReader reader = new SAXReader(); Do ...