Network Motif 文献调研
Network Motif 文献调研
概述:Network motifs,可以认为是网络中频繁出现的子图模式,是复杂网络的"构建块"。有两篇发表在science上的论文给出motif比较权威的解释:① MILO, Ron, et al将motifs描述为:recurring, significant patterns of inter-connections. ②BENSON et al. 将motif描述为:The most common higher-order structures are small network subgraphs, which we refer to as network motifs. Network motifs are considered building blocks for complex networks. Motifs在网络或图上有许多应用,如角色发现,链路预测,蛋白质识别等等。为了便于了解motif的研究进展,进行了相关的文献调研。
文献调研涉及以下文献:
[1] MILO, Ron, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298.5594: 824-827.
[2] BENSON, Austin R.; GLEICH, David F.; LESKOVEC, Jure. Higher-order organization of complex networks[J]. Science, 2016, 353.6295: 163-166.
[3] Kashtan N, Itzkovitz S, Milo R, et al. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs[J]. Bioinformatics, 2004, 20(11): 1746-1758.
[4] Schreiber F, Schwöbbermeyer H. MAVisto: a tool for the exploration of network motifs[J]. Bioinformatics, 2005, 21(17): 3572-3574.
[5] Wernicke S, Rasche F: FANMOD: a tool for fast network motif detection[J]. Bioinformatics 2006, 22:1152-1153.
[6] Kashani Z R M, Ahrabian H, Elahi E, et al. Kavosh: a new algorithm for finding network motifs[J]. BMC bioinformatics, 2009, 10(1): 318.
[7] Zhang Y, Parthasarathy S. Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks[C]. international conference on data engineering, 2012: 1049-1060.
[8] Lin W, Xiao X, Xie X, et al. Network motif discovery: A GPU approach[C]. international conference on data engineering, 2015: 831-842.
[9] Wang T, Peng J, Peng Q, et al. FSM: Fast and scalable network motif discovery for exploring higher-order network organizations[J]. Methods, 2020: 83-93.
[10] Wang L, Ren J, Xu B, et al. MODEL: Motif-Based Deep Feature Learning for Link Prediction[J]. IEEE Transactions on Computational Social Systems, 2020: 1-14.
[11] Yu Y, Lu Z, Liu J, et al. RUM: Network Representation Learning Using Motifs[C]. international conference on data engineering, 2019: 1382-1393.
[12] Monti F, Otness K, Bronstein M M, et al. MotifNet: a motif-based Graph Convolutional Network for directed graphs[J]. arXiv: Learning, 2018.
[13] Rossi R A, Ahmed N K, Koh E, et al. A structural graph representation learning framework[C]. web search and data mining, 2020: 483-491.
[14] Xia F, Wei H, Yu S, et al. A Survey of Measures for Network Motifs[J]. IEEE Access, 2019: 106576-106587.
文献[1][2]是motif方面比较权威的论文;[3]-[7]是如何找motif的论文;[8][9]是关于motif的拓展;[10]-[13]是利用motif做网络表示学习的论文。[14]是motif相关指标介绍的论文。下面是部分论文的简介。
文献[1]: MILO, Ron, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298.5594: 824-827.
概述: 本篇论文发表在science上,较为权威,是最早提出motifs概念的论文之一。本文将motifs描述为:recurring, significant patterns of inter-connections. 但是论文没有给出motifs的公式化定义,而是基于统计的观点,即network motifs 是出现频繁的子图,对比随机网络有更高的出现概率。这里的随机网络是与真实网络节点数目相同,且“入边”与“出边”个数相同的网络,用来作为真实网络的对比。(The network motifs are those patterns for which the probability P of appearing in a randomized network an equal or greater number of times than in the real network is lower than a cutoff value.) 然后文章中采用z score来衡量motif出现的频繁程度。zscore越大,代表子图越有可能是motif。公式如右:。几个真实网络示例如下图。同时也有给出pvalue指标,则是越小越好。更多细节见论文。
文献[2]: BENSON, Austin R.; GLEICH, David F.; LESKOVEC, Jure. Higher-order organization of complex networks[J]. Science, 2016, 353.6295: 163-166.
概述:本篇论文发表在science上;论文描述了什么是network motifs, 即最常用的高阶子图,它是复杂网络的构建块。(The most common higher-order structures are small network subgraphs, which we refer to as network motifs. Network motifs are considered building blocks for complex networks.) 论文没有给出公式定义,也是通过描述结合图示描述motifs, 如下图所示。
文中提出的框架:
对于motif的使用:(没有说怎么生成motifs,而是直接使用给定的motif M来生成权值矩阵,矩阵中元素的值是节点i和j在M中出现的次数)。这里说的给定motif,是说给定一种类型的motif,然后根据这种类型的motif从原始网络中找到符合的所有子图。其中会涉及到子图非同构的问题,本文没有详细说明。根据给定的motif M建立权值矩阵后,再使用专门的目标函数进行图切分,以产生聚类结果,如下面的公式所示。
更多细节详见论文。
小结:如果M表示motif类型,Mi表示一种类型的motif,则一个图上,一种motif Mi是对应很多子图的;根据该类型可以找图上的符合Mi的所有子图;这些子图可以看作是原始网络的子集。
文献[3]-[6]: 如何找network motif,包括枚举、识别、分类等问题。
[3] Kashtan N, Itzkovitz S, Milo R, et al. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs[J]. Bioinformatics, 2004, 20(11): 1746-1758.
[4] Schreiber F, Schwöbbermeyer H. MAVisto: a tool for the exploration of network motifs[J]. Bioinformatics, 2005, 21(17): 3572-3574.
[5] Wernicke S, Rasche F: FANMOD: a tool for fast network motif detection[J]. Bioinformatics 2006, 22:1152-1153.
[6] Kashani Z R M, Ahrabian H, Elahi E, et al. Kavosh: a new algorithm for finding network motifs[J]. BMC bioinformatics, 2009, 10(1): 318.
文献[3]提出了一种MFinder的算法和相应的软件;文献[4]给出了一种MAVisto的工具;文献[5]给出了一种FANMOD的工具;文献[7]提出了一种Kavosh的算法。上述的这些算法或工具都是用于motif discovery。相关软件或代码已经开源,见下面的链接:
l http://www.weizmann.ac.il/mcb/UriAlon/download/network-motif-software
l https://github.com/shmohammadi86/Kavosh
以文献[6]为例,介绍一下发现motif的流程。
文献[6]提出了一种Kavosh的算法,用于发现k-size network motifs,对比其他算法具有较低的内存和时间的开销( We present a new algorithm (Kavosh), for finding k-size network motifs with less memory and CPU time in comparison to other existing algorithms)。该算法有四个子任务,即子图枚举、子图分类、随机图生成、motif识别。(consists of four subtasks: Enumeration: finding all subgraphs of a given size that occur in the input graph; Classification: classifying each found sub-graph into isomorphic groups; Random graph generation: generating random graphs with respect to the input network (enumeration and classification are also performed on random graphs) and Motif identification: distinguishing motifs among all found sub-graphs on basis of statistical parameters.)。算法具体可以分为4步,如下:
1) 子图枚举:利用树型结构,找出所有的k-size子图。
2) 子图分类:即给k-size子图做标记,以互相区别。具体做法是就是根据子图生成邻接矩阵,输入到NAUTY,产生canonical labeling,作为子图的分类鉴别。其中,NAUTY是用于识别非同构图的一种知名的算法。
3) 产生随机图:这里的随机图是与输入图具有相同的节点数以及相同的度分布(包括入度、出度)的随机产生的图。实际使用中往往产生若干个随机图,然后同样进行枚举、分类的操作。
4) motif识别:根据真实网络的子图的统计数据,与随机网络的子图的平均统计数据,计算一些指标(Zscore, Pvalue等),从而得出频繁程度高的子图作为motif。
文献[7]-[9]: 是一些关于motif的优化和拓展。
[7] Zhang Y, Parthasarathy S. Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks[C]. international conference on data engineering, 2012: 1049-1060.
文献[7]发表于ICDE上,是数据挖掘的顶级会议。论文提出被称为K-Core和Triangle K-Core的motif。其中K-Core指的是子图中的每个节点的度数至少为K;Triangle K-Core指的是这样一种子图,子图中每条边都至少关联了K个三角形结构,如下图所示。文章说明了Triangle K-Core比K-Core更接近于clique,即Triangle K-Core内部的节点关联更为紧密。例子:an edge participating in 4 triangles implies a subgraph of 6 nodes and 9 edges (in the worst case);and it is closer to a 6-node clique (density: 9/15=60%, in the worst case)。这种Triangle K-Core的motif可以作为一种较好的高阶的局部结构,而不用像clique那样有极其严格的连接要求。
[8] Lin W, Xiao X, Xie X, et al. Network motif discovery: A GPU approach[C]. international conference on data engineering, 2015: 831-842.
[9] Wang T, Peng J, Peng Q, et al. FSM: Fast and scalable network motif discovery for exploring higher-order network organizations[J]. Methods, 2020: 83-93.
文献[10]-[11]: 是利用motif做network embedding的一些论文。
[10] Wang L, Ren J, Xu B, et al. MODEL: Motif-Based Deep Feature Learning for Link Prediction[J]. IEEE Transactions on Computational Social Systems, 2020: 1-14.
概述:根据motif从G中抽取子图,得到一个motif(多个节点)和一个负样本节点。然后每个节点都进入自编码器(由nonlinear activation functions堆叠而成)中进行学习。设计特定的优化函数,优化的目标是让motif内节点的向量更加靠近,让motif的节点与负样本节点更加远离。最终获取节点嵌入,并用于链路预测上。
模型框图如下:
大概的思路是,根据给定的motif从G中抽取子图,得到一个motif(多个节点)和一个负样本节点。然后每个节点都进入自编码器中进行学习。学习的目标是让motif内节点的向量更加靠近,让motif的节点与负样本节点更加远离。损失函数如下。
评价:本文中,motif的发现是引用前人的工作,自编码器的构建也是前人的工作,创新点体现在两者的结合上,以及多编码器上。论文的任务是链路预测。(This method seamlessly incorporates motifs and deep learning model into link prediction.)
[11] Yu Y, Lu Z, Liu J, et al. RUM: Network Representation Learning Using Motifs[C]. international conference on data engineering, 2019: 1382-1393.
概述:本文发表在ICDE2019上,提出了一个使用motif做网络表示学习的模型RUM。在文中提出了两种策略,即MotifWalk 和 MotifRe-weighting,用来形成motif-aware network embeddings. 示意图如下图所示,是一种网络粗化的策略,与随机游走比较相关。
本文未给出motif的定义,而是图示。本文对motif的介绍是:A network motif is a small sub-network that represents an elemental and recurring pattern in a network. [20] has given a list for the shapes of motifs. 论文主要对三角结构进行处理,这样做时间开销比较小。
[12] Monti F, Otness K, Bronstein M M, et al. MotifNet: a motif-based Graph Convolutional Network for directed graphs[J]. arXiv: Learning, 2018.
概述:将motif与GCN结合而提出了MotifNet模型。论文对于motif的介绍如下图所示。论文给出了motif粗略的定义,且基于motif产生权值矩阵,也是直接使用了Benson et al.的内容。论文将它与GCN结合做网络表示学习。
[13] Rossi R A, Ahmed N K, Koh E, et al. A structural graph representation learning framework[C]. web search and data mining, 2020: 483-491.
概述:论文利用motif生成K阶的权值矩阵,然后利用矩阵分解类似的原理做图表示学习。
Network Motif 文献调研的更多相关文章
- CenterNet文献调研记录
心仪院校导师任务之一,文献调研记录. 本文部分思路参考: 1. Anchor-Free 2. https://zhuanlan.zhihu.com/p/66048276 3. https://blog ...
- BP neural network optimized by PSO algorithm on Ammunition storage reliability prediction 阅读笔记
1.BP neural network optimized by PSO algorithm on Ammunition storage reliability prediction 文献简介文献来源 ...
- Graph-tool简介 - wiki
graph-tool is a Python module for manipulation and statistical analysis of graphs[disambiguation nee ...
- 一名IT从业者的英语口语能力成长路径
一名IT从业者的英语口语能力成长路径 来源: 微信公众号 发布时间: 2014-03-12 22:53 阅读: 6134 次 推荐: 24 原文链接 [收藏] 这篇文章是我最近十天口 ...
- vue-cli3 一直运行 /sockjs-node/info?t= 解决方案
sockjs-node 是一个JavaScript库,提供跨浏览器JavaScript的API,创建了一个低延迟.全双工的浏览器和web服务器之间通信通道. 服务端:sockjs-node(https ...
- 转录调控实战 | 一文解决转录调控问题 | chIP-seq | ATAC-seq
做生物的想发文章怎么办?转录调控来解析(huyou)! 最简单的情形: 1. 我在研究一个非常重要的基因A,功能已经做得差不多了,现在想深挖,第一步就是想知道哪个转录因子调控这个基因A: 2. 我发现 ...
- Expectation Propagation: Theory and Application
原文:http://dongguo.me/blog/2014/01/01/expectation-propagation/ 简介 第一次接触EP是10年在百度实习时,当时组里面正有计划把线上的CTR预 ...
- vue-cli3 一直运行 /sockjs-node/info
首先 sockjs-node 是一个JavaScript库,提供跨浏览器JavaScript的API,创建了一个低延迟.全双工的浏览器和web服务器之间通信通道. 服务端:sockjs-node(ht ...
- vue-cli3 中 sockjs-node/info?t=报错 的解决方法
页面突然出现这种报错: 查看Network看到是info接口报错,我项目中没有调用过该项目,然后百度查询sockjs-node/info?t=1562204191563, 首先 sockjs-node ...
随机推荐
- BSGS 和扩展
BSGS BSGS,全称叫 BabyStepGiantStep,也就是大步小步 其实还是比较暴力的 它可以\(O(\sqrt p)\)的复杂度内解出: \[a^x\equiv n\pmod p,\gc ...
- 洛谷P1771 方程的解
P1771 方程的解 都知道这个题可以用隔板法做 把这个\(g(x)\)想象为.....\(g(x)\)个苹果? 因为解是正整数,所以给这些"苹果"分组的时候每组最少有一个 然后我 ...
- js 跳出循环
js 循环主要有 for while 主要有三种方式 :break continue return break是跳出当前整个循环语句,循环终止会继续执行该循环之后的代码 而continue是跳过当前循 ...
- Maven安装本地jar包到本地仓库
Maven 安装 JAR 包到本地仓库的命令是: mvn install:install-file -Dfile=jar包的位置 -DgroupId=上面的groupId -DartifactId=上 ...
- spring学习笔记(八)webSocket
知识储备 什么是stomp? 我们可以类比TCP与Http协议,我们知道Http协议是基于TCP协议的,Http协议解决了 web 浏览器发起请求以及 web 服务器响应请求的细节,我们在编码时候只要 ...
- 王颖奇 20171010129《面向对象程序设计(java)》第十四周学习总结
实验十四 Swing图形界面组件 理论知识知识点: 1.Swing和MVC设计模式2.布局管理器3.文本输入4.选择组件5.菜单6.对话框 实验时间 2018-11-29 1.实验目的与要求 (1) ...
- python gdal 读取栅格数据
1.gdal包简介 gdal是空间数据处理的开源包,其支持超过100种栅格数据类型,涵盖所有主流GIS与RS数据格式,包括Arc/Info ASCII Grid(asc),GeoTiff (tiff) ...
- 白话马尔科夫链蒙特卡罗方法(MCMC)
前言 你清茶园不是人待的地方! 里面的个个都是人才,说话又好听--就是我太菜了啥也听不懂,这次期中还考的贼**烂,太让人郁闷了. 最近课上讲这个马尔科夫链蒙特卡罗方法,我也学得一塌糊涂.这时我猛然想起 ...
- 浅析微软的网关项目 -- ReverseProxy
浅析微软的网关项目 ReverseProxy Intro 最近微软新开了一个项目 ReverseProxy ,也叫做 YARP(A Reverse Proxy) 官方介绍如下: YARP is a r ...
- luoguP3121解题报告
p3121 本题首先利用一个手写栈,使元素可以快速出栈,再利用栈快速查询上一个元素在trie中的位置.