MySQL数据库中索引的数据结构是什么?(B树和B+树的区别)
B树(又叫平衡多路查找树)
注意B-树就是B树,-只是一个符号。
B树的性质(一颗M阶B树的特性如下)
1、定义任意非叶子结点最多只有M个儿子,且M>2;
2、根结点的儿子数为[2, M];
3、除根结点以外的非叶子结点的儿子数为[M/2, M];
4、每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
5、非叶子结点的关键字个数=指向儿子的指针个数-1;
6、非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7、非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
8、所有叶子结点位于同一层;
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;
B-树的特性:
1.关键字集合分布在整颗树中;
2.任何一个关键字出现且只出现在一个结点中;
3.搜索有可能在非叶子结点结束;
4.其搜索性能等价于在关键字全集内做一次二分查找;
B+树
(1)简介
B+树是应文件系统所需而产生的一种B树的变形树(文件的目录一级一级索引,只有最底层的叶子节点(文件)保存数据)非叶子节点只保存索引,不保存实际的数据,数据都保存在叶子节点中,这不就是文件系统文件的查找吗?
我们就举个文件查找的例子:有3个文件夹a、b、c, a包含b,b包含c,一个文件yang.c,a、b、c就是索引(存储在非叶子节点), a、b、c只是要找到的yang.c的key,而实际的数据yang.c存储在叶子节点上。
所有的非叶子节点都可以看成索引部分!
(2)B+树的性质(下面提到的都是和B树不相同的性质)
1、非叶子节点的子树指针与关键字个数相同;
2、非叶子节点的子树指针p[i],指向关键字值属于[k[i],k[i+1]]的子树.(B树是开区间,也就是说B树不允许关键字重复,B+树允许重复);
3、为所有叶子节点增加一个链指针;
4、所有关键字都在叶子节点出现(稠密索引). (且链表中的关键字恰好是有序的);
5、非叶子节点相当于是叶子节点的索引(稀疏索引),叶子节点相当于是存储(关键字)数据的数据层;
6、更适合于文件系统;
非叶子节点(比如5,28,65)只是一个key(索引),实际的数据存在叶子节点上(5,8,9)才是真正的数据或指向真实数据的指针。
应用
1、B和B+树主要用在文件系统以及数据库做索引,比如MySQL;(MySQL使用B+树)
B/B+树性能分析
n个节点的平衡二叉树的高度为H(即logn),而n个节点的B/B+树的高度为logt((n+1)/2)+1;
若要作为内存中的查找表,B树却不一定比平衡二叉树好,尤其当m较大时更是如此。因为查找操作CPU的时间在B-树上是O(mlogtn)=O(lgn(m/lgt)),而m/lgt>1;所以m较大时O(mlogtn)比平衡二叉树的操作时间大得多。因此在内存中使用B树必须取较小的m。(通常取最小值m=3,此时B-树中每个内部结点可以有2或3个孩子,这种3阶的B-树称为2-3树)。
为什么说B+树比B树更适合数据库索引?
1、 B+树的磁盘读写代价更低:B+树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B树更小,如果把所有同一内部节点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对IO读写次数就降低了。
2、B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
3、由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。
PS:我在知乎上看到有人是这样说的,我感觉说的也挺有道理的:
他们认为数据库索引采用B+树的主要原因是:B树在提高了IO性能的同时并没有解决元素遍历的我效率低下的问题,正是为了解决这个问题,B+树应用而生。B+树只需要去遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作或者说效率太低。
今天看了几篇文章,自己总结一下。
数据库使用B+树肯定是为了提升查找效率。
但是具体如何提升查找效率呢?
查找数据,最简单的方式是顺序查找。但是对于几十万上百万,甚至上亿的数据库查询就很慢了。
所以要对查找的方式进行优化,熟悉的二分查找,二叉树可以把速度提升到O(log(n,2)),查询的瓶颈在于树的深度,最坏的情况要查找到二叉树的最深层,由于,每查找深一层,就要访问更深一层的索引文件。在多达数G的索引文件中,这将是很大的开销。所以,尽量把数据结构设计的更为‘矮胖’一点就可以减少访问的层数。在众多的解决方案中,B-/B+树很好的适合。B-树定义具体可以查阅,简而言之就是中间节点可以多余两个子节点,而且中间的元素可以是一个域。相比B-树,B+树的父节点也必须存在于子节点中,是其中最大或者最小元素,B+树的节点只存储索引key值,具体信息的地址存在于叶子节点的地址中。这就使以页为单位的索引中可以存放更多的节点。减少更多的I/O支出。因此,B+树成为了数据库比较优秀的数据结构,MySQL中MyIsAM和InnoDB都是采用的B+树结构。不同的是前者是非聚集索引,后者主键是聚集索引,所谓聚集索引是物理地址连续存放的索引,在取区间的时候,查找速度非常快,但同样的,插入的速度也会受到影响而降低。聚集索引的物理位置使用链表来进行存储。
参考链接:
MySQL数据库中索引的数据结构是什么?(B树和B+树的区别)的更多相关文章
- Mysql数据库中索引的概念总结
1.索引的目的是什么 1.快速访问数据表中的特定信息,提高检索速度 2.创建唯一性索引,保证数据库表中每一行数据的唯一性. 3.加速表和表之间的连接 4.使用分组和排序子句进行数据检索时,可以显著减少 ...
- MySQL数据库之索引
1 引言 在没有索引的情况下,如果要寻找特定行,数据库可能要遍历整个数据库,使用索引后,数据库可以根据索引找出这一行,极大提高查询效率.本文是对MySQL数据库中索引使用的总结. 2 索引简介 索引是 ...
- MySQL数据库中的索引(一)——索引实现原理
今天我们来探讨一下数据库中一个很重要的概念:索引. MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构,即索引是一种数据结构. 我们知道,数据库查询是数据库的最主要 ...
- MySQL存储引擎的实际应用以及对MySQL数据库中各主要存储引擎的独特特点的描述
MySQL存储引擎的实际应用以及对MySQL数据库中各主要存储引擎的独特特点的描述: 1.MySQL有多种存储引擎: MyISAM.InnoDB.MERGE.MEMORY(HEAP).BDB(Berk ...
- 从SQLSERVER/MYSQL数据库中随机取一条或者N条记录
从SQLSERVER/MYSQL数据库中随机取一条或者N条记录 很多人都知道使用rand()函数但是怎麽使用可能不是每个人都知道 建立测试表 USE [sss] GO ,NAME ) DEFAULT ...
- mysql管理 ------查看 MySQL 数据库中每个表占用的空间大小
如果想知道MySQL数据库中每个表占用的空间.表记录的行数的话,可以打开MySQL的 information_schema 数据库.在该库中有一个 TABLES 表,这个表主要字段分别是: TABLE ...
- MySQL数据库对象-索引
1. 概述2. 索引分类2.1 不同索引的概念2.1.1 普通索引2.1.2 唯一索引2.1.3 全文索引2.1.4 多列索引3. 索引操作3.1 普通索引3.1.1 创建表时创建普通索引3.1.2 ...
- Mysql数据库中InnoDB和MyISAM的差别
Mysql数据库中InnoDB和MyISAM的差别 InnoDB和MyISAM是在使用MySQL最常用的两个表类型,各有优缺点,视具体应用而定.基本的差别为:MyISAM类型不支持事务处理等高级处理, ...
- 千万级MySQL数据库建立索引,提高性能的秘诀
实践中如何优化MySQL 实践中,MySQL的优化主要涉及SQL语句及索引的优化.数据表结构的优化.系统配置的优化和硬件的优化四个方面,如下图所示: SQL语句及索引的优化 SQL语句的优化 SQL语 ...
随机推荐
- gogs 小团队使用
最近小团队开始使用 gogs 来保存手头的项目.具体的使用流程如下: 由 root 用户新建 organization, 比如说建立 hardware,然后把团队的 技术负责人拉到 owners 这个 ...
- Tomcat启动失败原因: More than one fragment with the name [spring_web] was found. 解决
将一个eclipse上搭建好的项目移到idea开发时遇到的问题,tomcat启动时报了3个错误 -Nov- :: ms -Nov- ::)-127.0.0.1] org.apache.tomcat.u ...
- nodejs(6)express学习
1.简单认识express express::一个快速的网站开发框架,封装了原生的http模块,用起来更方便:API更人性化 特点 基于Node.js平台之上,进一步封装了 http 模块,从而提供了 ...
- JavaWeb之Servlet入门(二)
1. 准备 在JavaWeb之Servlet入门(一)中,我们完成了第一个Servlet程序,完成了从URL到后台控制器的中转过程,接下来我们延续JavaWeb之Servlet入门(一)学习下如何传参 ...
- 题解【[HAOI2006]受欢迎的牛】
切水题,写题解~ tarjan缩一波点,然后 只有一个出度为0的点:他的size就是答案 有多个初度为0的点:无解,0个 因为是强联通分量,所以肯定有出度为0的点,否则--就是你tarjan写挂了~ ...
- Django框架(七):模型(三) 关联、模型类的属性
1. 关联 1.1 模型类关系 关系型数据库的关系包括三种类型: ForeignKey:一对多,将字段定义在多的一端中. ManyToManyField:多对多,将字段定义在任意一端中. OneToO ...
- Python登录TP-Link路由器换ip脚本
有些时候我们需要更换IP(你懂得),网络下载的拨号软件大部分是需要电脑直接链接调制解调器(猫),对于局域网用户来说就比较麻烦了,下面我们用python来实现登录路由器自动切换ip的功能 # -*- c ...
- normal equation(正规方程)
normal equation(正规方程) 正规方程是通过求解下面的方程来找出使得代价函数最小的参数的: \[ \frac{\partial}{\partial\theta_j}J\left(\the ...
- UML-操作契约是什么?
1.例子 发现: 1).操作契约也是用例模型的一部分. 2).SSD+用例文本+领域模型---->操作契约 2.定义 1).契约有哪些部分? 操作:操作的名称和参数(就是SSD中的系统操作) 交 ...
- java读取本地json数组并解析
1.本地json位置 2,json数据 {"garbages":[{"id":"/m/011k07","ename":& ...