Solving ordinary differential equations I(nonstiff problems),exercise 1.1
Solve equation $y'=1-3x+y+x^2+xy$ with another initial value $y(0)=1$.
Solve: We solve this by using Newton's extraordinary method.We assume that the solution is analytic,which means it can be expanded in Taylor series.$y(0)=1$ means that
$$ y'(0)=2 $$ So $$y=1+2x+\cdots$$.
So
$$y'=1-3x+(1+2x+\cdots)+x^2+x(1+2x+\cdots)=2+0\cdot x+\cdots$$
So we have
$$y=1+2x+0\cdot x^{2}+\cdots$$
So we have
$$ y'=1-3x+(1+2x+0\cdot x^{2}+\cdots)+x^2+x(1+2x+0\cdot x^{2}+\cdots)=2+0\cdot x+3x^2+\cdots $$
So we have $$ y=1+2x+0\cdot x^2+x^3+\cdots $$
$$ \vdots $$
Solving ordinary differential equations I(nonstiff problems),exercise 1.1的更多相关文章
- Solving ordinary differential equations I(Nonstiff Problems),Exercise 1.2:A wrong solution
(Newton 1671, “Problema II, Solutio particulare”). Solve the total differential equation $$3x^2-2ax+ ...
- NIPS2018最佳论文解读:Neural Ordinary Differential Equations
NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32 雷锋网 AI 科技评论按,不久前,NeurI ...
- PP: Neural ordinary differential equations
Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hi ...
- 《Differential Equations with Boundary-Value Problems》-chaper2-一阶线性方程
学习微分方程中,一个很常见的疑惑就是,我们所熟悉的非齐次微分方程的通解是对应齐次方程的通解加特解,但是更为重要的是,我们需要知道这句话是怎么得来的. 我们探讨一个未知问题的一般思路是将其不断的与已知已 ...
- symmetry methods for differential equations,exercise 1.4
tex文档: \documentclass[a4paper, 12pt]{article} % Font size (can be 10pt, 11pt or 12pt) and paper size ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
- A Basic Course in Partial Differential Equations
A Basic Course in Partial Differential Equations, Qing Han, 2011 [下载说明:点击链接,等待5秒, 点击右上角的跳过广告后调至下载页面, ...
- 【线性代数】6-3:微分方程的应用(Applications to Differential Equations)
title: [线性代数]6-3:微分方程的应用(Applications to Differential Equations) categories: Mathematic Linear Algeb ...
- Introduction to Differential Equations,Michael E.Taylor,Page 3,4 注记
此文是对 [Introduction to Differential Equations,Michael E.Taylor] 第3页的一个注记.在该页中,作者给了微分方程$$\frac{dx}{dt} ...
随机推荐
- 标准JAVA工程结构
- mysql初始化出现:FATAL ERROR: Neither host 'DB01' nor 'localhost' could be looked up with
初始化时: FATAL ERROR: Neither host 'DB01' nor 'localhost' could be looked up with /application/mysql/bi ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 修饰符类型
C++ 允许在 char.int 和 double 数据类型前放置修饰符.修饰符用于改变基本类型的含义,所以它更能满足各种情境的需求. 下面列出了数据类型修饰符: signed unsigned lo ...
- SublimeText3和插件的安装
SublimeText3和插件的安装 步骤一:进入官网下载SublimeText3(http://www.sublimetext.com/3),安装并打开SublimeText3 步骤二:进入Su ...
- Spring装配Bean的一些高级技巧
一.使用@Profile注解来实现在不同环境下创建不同的Bean 实现方式:将不同的Bean定义整理到对应环境的Profile中,当应用部署到不同的环境时(开发环境或者是QA环境或者是生产环境),激活 ...
- PAT 2018 春
A 1140 Look-and-say Sequence 简单模拟.可能要注意字符串第一个字符和最后一个字符的处理. #include <cstdio> #include <iost ...
- js 数据
非0数字值 都是true 0和NaN 都是false 任何对象 都是true null 都是false undefined 不适用 详情
- POJ 1840:Eqs 哈希求解五元方程
Eqs Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 14169 Accepted: 6972 Description ...
- Java集合--Map
Map接口(双例集合): Map提供了映射关系,存放的元素是以key-value键值对存放的.可以根据key快速的查询value.key不可以重复,value可以重复. 常用实现类:HashMap,H ...
- Scheduled定时任务器在Springboot中的使用
Scheduled定时任务器是Spring3.0以后自带的一个定时任务器. 使用方式: 1.添加依赖 <!-- 添加 Scheduled 坐标 --> <dependency> ...