一、介绍

内容

使用 RNN 进行序列预测

今天我们就从一个基本的使用 RNN 生成简单序列的例子中,来窥探神经网络生成符号序列的秘密。

我们首先让神经网络模型学习形如 0^n 1^n 形式的上下文无关语法。然后再让模型尝试去生成这样的字符串。在流程中将演示 RNN 及 LSTM 相关函数的使用方法。

实验知识点

  • 什么是上下文无关文法
  • 使用 RNN 或 LSTM 模型生成简单序列的方法
  • 探究 RNN 记忆功能的内部原理

二、什么是上下文无关语法

上下文无关语法

首先让我们观察以下序列:

  • 01
  • 0011
  • 000111
  • 00001111
  • ……

它们有什么特点和规律呢?

它们都只含有 0 和 1 并连续地出现,序列长度并不相等,但在每条序列中 0 和 1 的个数是相等的。我们可以用一个简单的数学表达式来表述所有这些 01 序列的通用规律,其实就是 0^n 1^n,其中 n 就是序列中 0 或者 1 的个数。这样的序列看似简单,但其实它在计算机科学中有一个非常响亮的名字,叫做“上下文无关文法”(Context-free grammar)。所谓上下文无关文法,简单来说,就是可以被一组替代规则所生成,而与本身所处的上下文(前后出现的字符)无关。

上下文无关语法序列的生成

针对上面这种 0^n 1^n 形式的上下文无关语法序列,我们人类要学会数出 0 的个数 n,这样也就自然知道了 1 的个数。可问题的难点是,对于一个机器来说,它必须自己学习出如何数 0 的个数,而不能从任何其它的途径获取 n。这个问题对于人类来说很容易,并且对于一个特定编写的程序来说也很简单。但是对于一个通用的神经网络模型来说,这就并不容易了,因为它自身并不会长出来一个计数器。它必须通过观察数据归纳总结,发明一种记忆系统从而能够看出 0 和 1 之间的长程规律,并实现等价的计数功能。尤其是当 n 很大的时候,这个问题将非常困难。因为序列越长,模型对记忆系统的要求就越高。大致了解了思路和关键问题后,下面就让我们来看看如何用 RNN 来解决这个问题。

三、使用 RNN 模型进行序列生成

引入相关包

值得注意的是本次使用了 Counter 搜集器,它可以让统计词频变得更简单。

# 导入程序所需要的程序包

#PyTorch用的包
import torch
import torch.nn as nn
import torch.optim
from torch.autograd import Variable from collections import Counter #搜集器,可以让统计词频更简单 #绘图、计算用的程序包
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import rc
import numpy as np
#将图形直接显示出来
%matplotlib inline

生成训练数据

为了让训练能够有更好的效果,生成时故意将字符串的长度控制的比较短。为了让模型可以意识到每个字符串的起始与结束,每个序列中除了 0、1 以外,还有 3、2。其中 3 代表字符串的起始,2 代表字符串的结束。所有字符串都是如下的形式:30001112,300112,3012...

那么下面首先设定控制生成字符串长度的概率。

# 生成的样本数量
samples = 2000 # 训练样本中n的最大值
sz = 10
# 定义不同n的权重,我们按照10:6:4:3:1:1...来配置字符串生成中的n=1,2,3,4,5,...
probability = 1.0 * np.array([10, 6, 4, 3, 1, 1, 1, 1, 1, 1])
# 保证n的最大值为sz
probability = probability[ : sz]
# 归一化,将权重变成概率
probability = probability / sum(probability)
train_set = []

# 开始生成samples这么多个样本
for m in range(samples):
# 对于每一个生成的字符串,随机选择一个n,n被选择的权重被记录在probability中
n = np.random.choice(range(1, sz + 1), p = probability)
# 生成这个字符串,用list的形式完成记录
inputs = [0] * n + [1] * n
# 在最前面插入3表示起始字符,2插入尾端表示终止字符
inputs.insert(0, 3)
inputs.append(2)
train_set.append(inputs) #将生成的字符串加入到train_set训练集中

在生成训练数据的同时,也将校验数据集生成,并保存到 valid_set 中。

valid_set = []

# 再生成samples/10的校验样本
for m in range(samples // 10):
n = np.random.choice(range(1, sz + 1), p = probability)
inputs = [0] * n + [1] * n
inputs.insert(0, 3)
inputs.append(2)
valid_set.append(inputs)

与训练数据集不同的是,我们会生成少量的超长序列,也就是 n 超大的序列在校验数据集中,用以考验模型的能力极限。

# 再生成若干n超大的校验样本
for m in range(2):
n = sz + m
inputs = [0] * n + [1] * n
inputs.insert(0, 3)
inputs.append(2)
valid_set.append(inputs)
np.random.shuffle(valid_set)

定义 RNN 模型

PyTorch 提供了丰富的常用模型调用,所以我们无需去实现 RNN 模型的结构,直接调用函数即可。

正因为有了 RNN 函数,定义本次实验中 RNN 模型的方法与之前定义模型一样简单。

# 实现一个简单的RNN模型
class SimpleRNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers = 1):
# 定义
super(SimpleRNN, self).__init__() self.hidden_size = hidden_size
self.num_layers = num_layers
# 一个embedding层
self.embedding = nn.Embedding(input_size, hidden_size)
# PyTorch的RNN层,batch_first标志可以让输入的张量的第一个维度表示batch指标
self.rnn = nn.RNN(hidden_size, hidden_size, num_layers, batch_first = True)
# 输出的全链接层
self.fc = nn.Linear(hidden_size, output_size)
# 最后的logsoftmax层
self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden):
# 运算过程
# 先进行embedding层的计算,它可以把一个数值先转化为one-hot向量,再把这个向量转化为一个hidden_size维的向量
# input的尺寸为:batch_size, num_step, data_dim
x = self.embedding(input)
# 从输入到隐含层的计算
# x的尺寸为:batch_size, num_step, hidden_size
output, hidden = self.rnn(x, hidden)
# 从输出output中取出最后一个时间步的数值,注意output输出包含了所有时间步的结果,
# output输出尺寸为:batch_size, num_step, hidden_size
output = output[:,-1,:]
# output尺寸为:batch_size, hidden_size
# 喂入最后一层全链接网络
output = self.fc(output)
# output尺寸为:batch_size, output_size
# softmax函数
output = self.softmax(output)
return output, hidden def initHidden(self):
# 对隐含单元的初始化
# 注意尺寸是: layer_size, batch_size, hidden_size
return Variable(torch.zeros(self.num_layers, 1, self.hidden_size))

我们将上面代码的某些语句单独拿出来讲一下,首先:

self.embedding = nn.Embedding(input_size, hidden_size)

即输入首先会经过嵌入层被“压缩”至 hidden_size 的尺寸。这里嵌入层起到的作用与之前的实验相同,所以就不细讲了。值得一提的是 nn.RNN 这个部件,也就是所谓的 RNN 函数。

self.rnn = nn.RNN(hidden_size, hidden_size, num_layers, batch_first = True)

在定义这个部件的时候,需要指定输入给 RNN 层的向量尺寸 input_size(这里为输入经过嵌入后的 hidder_size)。以及 RNN 层隐含节点的数量 hidden_size,还包括 RNN 层的层数 num_layers

最后的参数 batch_first 管理了一个与用户编程习惯有关系的小细节。当把它设置为 True 的时候,RNN 输入变量的第一个维度就是批数据(batch)的维度,这与我们使用其它函数的习惯是一样的。

否则的话,按照 nn.RNN 的默认处理情况,批的维度在第二个位置上,而把第一个维度留给了时间。

训练 RNN 模型

首先实例化模型,定义模型的损失函数与优化算法

# 生成一个最简化的RNN,输入size为4,可能值为0,1,2,3,输出size为3,可能值为0,1,2
rnn = SimpleRNN(input_size = 4, hidden_size = 2, output_size = 3)
criterion = torch.nn.NLLLoss() #交叉熵损失函数
optimizer = torch.optim.Adam(rnn.parameters(), lr = 0.001) #Adam优化算法

然后是训练函数。

train_loss = 0

def trainRNN(epoch):
global train_loss
train_loss = 0
# 对train_set中的数据进行随机洗牌,以保证每个epoch得到的训练顺序都不一样。
np.random.shuffle(train_set)
# 对train_set中的数据进行循环
for i, seq in enumerate(train_set):
loss = 0
hidden = rnn.initHidden() #初始化隐含层神经元
# 对每一个序列的所有字符进行循环
for t in range(len(seq) - 1):
#当前字符作为输入,下一个字符作为标签
x = Variable(torch.LongTensor([seq[t]]).unsqueeze(0))
# x尺寸:batch_size = 1, time_steps = 1, data_dimension = 1
y = Variable(torch.LongTensor([seq[t + 1]]))
# y尺寸:batch_size = 1, data_dimension = 1
output, hidden = rnn(x, hidden) #RNN输出
# output尺寸:batch_size, output_size = 3
# hidden尺寸:layer_size =1, batch_size=1, hidden_size
loss += criterion(output, y) #计算损失函数
loss = 1.0 * loss / len(seq) #计算每字符的损失数值
optimizer.zero_grad() # 梯度清空
loss.backward() #反向传播,设置retain_variables
optimizer.step() #一步梯度下降
train_loss += loss #累积损失函数值
# 把结果打印出来
if i > 0 and i % 500 == 0:
print('第{}轮, 第{}个,训练Loss:{:.2f}'.format(epoch,
i,
train_loss.data.numpy() / i
))

验证函数

valid_loss = 0
errors = 0
show_out = '' def evaluateRNN():
global valid_loss
global errors
global show_out
valid_loss = 0
errors = 0
show_out = ''
for i, seq in enumerate(valid_set):
# 对每一个valid_set中的字符串做循环
loss = 0
outstring = ''
targets = ''
diff = 0
hidden = rnn.initHidden() #初始化隐含层神经元
for t in range(len(seq) - 1):
# 对每一个字符做循环
x = Variable(torch.LongTensor([seq[t]]).unsqueeze(0))
# x尺寸:batch_size = 1, time_steps = 1, data_dimension = 1
y = Variable(torch.LongTensor([seq[t + 1]]))
# y尺寸:batch_size = 1, data_dimension = 1
output, hidden = rnn(x, hidden)
# output尺寸:batch_size, output_size = 3
# hidden尺寸:layer_size =1, batch_size=1, hidden_size
mm = torch.max(output, 1)[1][0] #以概率最大的元素作为输出
outstring += str(mm.data.numpy()) #合成预测的字符串
targets += str(y.data.numpy()[0]) #合成目标字符串
loss += criterion(output, y) #计算损失函数 diff += 1 - mm.eq(y).data.numpy()[0] #计算模型输出字符串与目标字符串之间差异的字符数量
loss = 1.0 * loss / len(seq)
valid_loss += loss #累积损失函数值
errors += diff #计算累积错误数
if np.random.rand() < 0.1:
#以0.1概率记录一个输出字符串
show_out = outstring + '\n' + targets
# 打印结果
print(output[0][2].data.numpy())

在下面的训练代码中实际上进行了三重循环,Epoch 作为第一重循环,然后在 trainRNN 中对每个 train_set 中的字符串做第二重循环,最后是对每一个字符串中的每一个字符做循环。

#重复进行20次试验
num_epoch = 20
results = []
for epoch in range(num_epoch):
# 调用训练函数
trainRNN(epoch) # 在校验集上测试
evaluateRNN() # 打印结果
print('第{}轮, 训练Loss:{:.2f}, 校验Loss:{:.2f}, 错误率:{:.2f}'.format(epoch,
train_loss.data.numpy() / len(train_set),
valid_loss.data.numpy() / len(valid_set),
1.0 * errors / len(valid_set)
))
print(show_out)
# 将结果保存起来
results.append([train_loss.data.numpy() / len(train_set),
valid_loss.data.numpy() / len(train_set),
1.0 * errors / len(valid_set)
])
# 保存、提取模型(为展示用)
torch.save(rnn,'rnn.mdl')
rnn = torch.load('rnn.mdl')

观察 RNN 模型的学习结果

下面让 n 从 0 循环到 20,考察随着序列的增强,模型的预测效果会有怎样的变化。只有当模型能够预测出最后一个 1 以及后面应该是跟 2(字串结束字符)才算预测正确,也就意味着模型记忆住了 n 这个数字。

# 让n取0到20,看RNN是否能够成功预测下一个字符
for n in range(20): inputs = [0] * n + [1] * n
inputs.insert(0, 3)
inputs.append(2)
outstring = ''
targets = ''
diff = 0
hiddens = []
hidden = rnn.initHidden()
for t in range(len(inputs) - 1):
x = Variable(torch.LongTensor([inputs[t]]).unsqueeze(0))
y = Variable(torch.LongTensor([inputs[t + 1]]))
output, hidden = rnn(x, hidden) mm = torch.max(output, 1)[1][0]
outstring += str(mm.data.numpy())
targets += str(y.data.numpy()[0]) diff += 1 - mm.eq(y).data.numpy()[0]
print(n)
print(outstring)
print(targets)
print('Diff:{}'.format(diff))

可以看到,对于大部分的预测序列来说,经过长时间训练的 RNN 仅仅犯少量的错误,就是当输入从0变为1的那个瞬间。当 n 等于 14 时,开始出现大量错误,所以可以认为这个简单的 RNN 神经网络模型的记忆容量差不多就是 13。

四、使用 LSTM 模型进行序列生成

实现一个LSTM

那么下面就开始实现这个 LSTM 模型,因为 PyTorch 同样将 LSTM 结构封装的如此简洁,以至于 LSTM 模型代码几乎和 RNN 模型代码没有什么区别。

唯一不同的就是模型中调用 RNN 的位置现在改为了调用 LSTM 结构,即:

self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first = True)

LSTM 函数的各个参数意义也是与 RNN 相同的。

# 一个手动实现的LSTM模型,除了初始化隐含但愿部分,所有代码基本与SimpleRNN相同

class SimpleLSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers = 1):
super(SimpleLSTM, self).__init__() self.hidden_size = hidden_size
self.num_layers = num_layers
# 一个embedding层
self.embedding = nn.Embedding(input_size, hidden_size)
# 隐含层内部的相互链接
self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first = True)
self.fc = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): # 先进行embedding层的计算,它可以把一个
# x的尺寸:batch_size, len_seq, input_size
x = self.embedding(input)
# x的尺寸:batch_size, len_seq, hidden_size
# 从输入到隐含层的计算
output, hidden = self.lstm(x, hidden)
# output的尺寸:batch_size, len_seq, hidden_size
# hidden: (layer_size, batch_size, hidden_size),(layer_size, batch_size,hidden_size)
output = output[:,-1,:]
# output的尺寸:batch_size, hidden_size
output = self.fc(output)
# output的尺寸:batch_size, output_size
# softmax函数
output = self.softmax(output)
return output, hidden def initHidden(self):
# 对隐含单元的初始化
# 注意尺寸是: layer_size, batch_size, hidden_size
# 对隐单元的初始化
# 对引单元输出的初始化,全0.
# 注意hidden和cell的维度都是layers,batch_size,hidden_size
hidden = Variable(torch.zeros(self.num_layers, 1, self.hidden_size))
# 对隐单元内部的状态cell的初始化,全0
cell = Variable(torch.zeros(self.num_layers, 1, self.hidden_size))
return (hidden, cell)

虽然说 LSTM 模型的代码与 RNN 几乎相同,但有一个地方需要注意一下。就是在初始化隐藏层状态的时候,LSTM 除了初始化隐藏层的状态,还初始化了隐含层内部细胞的状态,也就是各个“门控单元”的状态。

训练简单 LSTM 模型

与 RNN 模型相同,下面进行 LSTM 模型的训练。首先实例化模型,定义模型的损失函数与优化算法:

lstm = SimpleLSTM(input_size = 4, hidden_size = 1, output_size = 3, num_layers = 1)
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.Adam(lstm.parameters(), lr = 0.001)

然后是定义训练函数:

train_loss = 0

def trainLSTM(epoch):
global train_loss
train_loss = 0
np.random.shuffle(train_set)
# 开始所有训练数据的循环
for i, seq in enumerate(train_set):
loss = 0
hidden = lstm.initHidden()
# 开始每一个字符的循环
for t in range(len(seq) - 1):
x = Variable(torch.LongTensor([seq[t]]).unsqueeze(0))
# x的尺寸:batch_size, len_seq, hidden_size
y = Variable(torch.LongTensor([seq[t + 1]]))
# y的尺寸:batch_size, data_dimension
output, hidden = lstm(x, hidden)
# output的尺寸:batch_size, data_dimension
# hidden: (layer_size, batch_size, hidden_size),(layer_size, batch_size,hidden_size)
loss += criterion(output, y)
loss = 1.0 * loss / len(seq)
optimizer.zero_grad()
loss.backward(retain_graph = True)
optimizer.step()
train_loss += loss
if i > 0 and i % 500 == 0:
print('第{}轮, 第{}个,训练Loss:{:.2f}'.format(epoch,
i,
train_loss.data.numpy() / i
))

然后是验证函数

valid_loss = 0
errors = 0
show_out = '' def evaluateRNN():
global valid_loss
global errors
global show_out
valid_loss = 0
errors = 0
show_out = ''
for i, seq in enumerate(valid_set):
loss = 0
outstring = ''
targets = ''
diff = 0
hidden = lstm.initHidden()
for t in range(len(seq) - 1):
x = Variable(torch.LongTensor([seq[t]]).unsqueeze(0))
# x的尺寸:batch_size, len_seq, hidden_size
y = Variable(torch.LongTensor([seq[t + 1]]))
# y的尺寸:batch_size, data_dimension
output, hidden = lstm(x, hidden)
# output的尺寸:batch_size, data_dimension
# hidden: (layer_size, batch_size, hidden_size),(layer_size, batch_size,hidden_size)
mm = torch.max(output, 1)[1][0]
outstring += str(mm.data.numpy())
targets += str(y.data.numpy()[0])
loss += criterion(output, y) diff += 1 - mm.eq(y).data.numpy()[0]
loss = 1.0 * loss / len(seq)
valid_loss += loss
errors += diff
if np.random.rand() < 0.1:
show_out = outstring + '\n' + targets
print(output[0][2].data.numpy())

下面正式进行 LSTM 模型的训练。LSTM 模型的训练流程与 RNN 模型是一样的。

num_epoch = 20
results = [] # 开始训练循环
for epoch in range(num_epoch):
trainLSTM(epoch)
# 在校验集上跑结果
evaluateRNN()
print('第{}轮, 训练Loss:{:.2f}, 校验Loss:{:.2f}, 错误率:{:.2f}'.format(epoch,
train_loss.data.numpy() / len(train_set),
valid_loss.data.numpy() / len(valid_set),
1.0 * errors / len(valid_set)
))
print(show_out)
results.append([train_loss.data.numpy() / len(train_set),
valid_loss.data.numpy() / len(train_set),
1.0 * errors / len(valid_set)
])
# 保存、提取模型(为展示用)
torch.save(lstm,'lstm.mdl')
lstm = torch.load('lstm.mdl')

再来看看这个# 让n取0到20,看SimpleLSTM是否能够成功预测下一个字符

for n in range(20):

inputs = [0] * n + [1] * n
inputs.insert(0, 3)
inputs.append(2)
outstring = ''
targets = ''
diff = 0
hiddens = []
hidden = lstm.initHidden()
for t in range(len(inputs) - 1):
x = Variable(torch.LongTensor([inputs[t]]).unsqueeze(0))
y = Variable(torch.LongTensor([inputs[t + 1]]))
output, hidden = lstm(x, hidden) mm = torch.max(output, 1)[1][0]
outstring += str(mm.data.numpy())
targets += str(y.data.numpy()[0]) diff += 1 - mm.eq(y).data.numpy()[0]
print(n)
print(outstring)
print(targets)
print('Diff:{}'.format(diff))LSTM网络在测试集上的表现如何

Pytorch基础——使用 RNN 生成简单序列的更多相关文章

  1. PyTorch基础——机器翻译的神经网络实现

    一.介绍 内容 "基于神经网络的机器翻译"出现了"编码器+解码器+注意力"的构架,让机器翻译的准确度达到了一个新的高度.所以本次主题就是"基于深度神经 ...

  2. PyTorch基础——使用神经网络识别文字中的情感信息

    一.介绍 知识点 使用 Python 从网络上爬取信息的基本方法 处理语料"洗数据"的基本方法 词袋模型搭建方法 简单 RNN 的搭建方法 简单 LSTM 的搭建方法 二.从网络中 ...

  3. js生成hash序列

    炒鸡简单的js生成hash序列的方法.如下: function createHash (hashLength) { if (!hashLength || typeof(Number(hashLengt ...

  4. TensorFlow练习7: 基于RNN生成古诗词

      http://blog.topspeedsnail.com/archives/10542 主题 TensorFlow RNN不像传统的神经网络-它们的输出输出是固定的,而RNN允许我们输入输出向量 ...

  5. NHibernate 映射基础(第三篇) 简单映射、联合主键

    NHibernate 映射基础(第三篇) 简单映射.联合主键 NHibernate完全靠配置文件获取其所需的一切信息,其中映射文件,是其获取数据库与C#程序关系的所有信息来源. 一.简单映射 下面先来 ...

  6. TensorFlow教程使用RNN生成唐诗

    本教程转载至:TensorFlow练习7: 基于RNN生成古诗词 使用的数据集是全唐诗,首先提供一下数据集的下载链接:https://pan.baidu.com/s/13pNWfffr5HSN79WN ...

  7. [人工智能]Pytorch基础

    PyTorch基础 摘抄自<深度学习之Pytorch>. Tensor(张量) PyTorch里面处理的最基本的操作对象就是Tensor,表示的是一个多维矩阵,比如零维矩阵就是一个点,一维 ...

  8. 学习笔记:利用GDI+生成简单的验证码图片

    学习笔记:利用GDI+生成简单的验证码图片 /// <summary> /// 单击图片时切换图片 /// </summary> /// <param name=&quo ...

  9. Matlab生成M序列的伪随机码

    伪随机编码中较常用的是m序列,它是线性反馈移位寄存器序列的一种,其特点是在相同寄存器级数的情况下输出序列周期最长.线性反馈移位寄存器的工作原理是,给定所有寄存器一个初始值,当移位脉冲到来时,将最后一级 ...

随机推荐

  1. HDU 4662 MU Puzzle(找规律)

    题意:问是否能把MI通过以下规则转换成给定的字符串s. 1.使M之后的任何字符串加倍(即,将Mx更改为Mxx). 例如:MIU到MIUIU.2.用U替换任何III.例如:MUIIIU至MUUU.3.去 ...

  2. sql 左联 右联 内联的区别

    如有表a(col1,col2),a,1b,1 b(col1,col2)a,3c,2 内部联接是指只返回符合联接条件的资料,如select * from a join b on a.col1 = b.c ...

  3. BGP(IBGP“内部路由器”和EBGP“外部路由器”)命令解析

    BGP:基于策略的路径向量路由协议. ①:(attribute)属性描述路径. ②:使用TCP(端口179)作为传输协议——(IBGP多使用loopback端口建立update-source) IBG ...

  4. 如何把控好Essay写作结构

    留学生在国内写过作文,但是对于essay写作到底了解多少呢?大家觉得essay写作太难是语言问题,但是大家要明白,老师对于内容的考察远重于对语言的考察.同学们的essay写作如果能做到言之有理,自圆其 ...

  5. 2.在约会网站上使用k近邻算法

    在约会网站上使用k近邻算法 思路步骤: 1. 收集数据:提供文本文件.2. 准备数据:使用Python解析文本文件.3. 分析数据:使用Matplotlib画二维扩散图.4. 训练算法:此步骤不适用于 ...

  6. 读书笔记 - javascript 高级程序设计 - 第一章 简介

      第一章 简介   诞生时间 1995 最初用途 客服端验证 第一版标准 注意是标准 1997年 Ecma-262  一个完整的js实现由三部分组成 ECMAScript DOM 文档对象模型 BO ...

  7. 12 react 基础 的 css 过渡动画 及 动画效果 及 使用 react-transition-group 实现动画

    一. 过渡动画 # index.js import React from 'react';import ReactDOM from 'react-dom';import App from './app ...

  8. WebSocket的简单实现&jsp

    创建一个web项目 导入依赖: <?xml version="1.0" encoding="UTF-8"?> <project xmlns=& ...

  9. docker 批量命令

    docker中 启动所有的容器命令: docker start $(docker ps -a | awk '{ print $1}' | tail -n +2) docker中    关闭所有的容器命 ...

  10. caffe fastercbnnahdemo

    https://download.csdn.net/download/zefan7564/10148990 https://blog.csdn.net/qq_37124237/article/deta ...