题目链接:https://cn.vjudge.net/problem/Gym-101630L

题目大意:

  对于一个集合的集合,若其中任意两个集合 \(A\) 和 \(B\) 都满足下述三个条件之一:\(A \subset B\) 或 \(B \subset A\) 或 \(A \cap B = \varnothing\),则称这个集合 \(laminar\).

  给定一棵有 \(N\) 个结点的树,再给出 \(f\) 个集合,每个集合包含树上两点之间的最短路径所经过的所有点,问这 \(f\) 个集合所组成的集合是否 \(laminar\).

知识点:  LCA、树上差分前缀和

解题思路:

  首先,所有只包含一个点的集合都可以忽略,它们不影响答案。

  用树上差分前缀和求出各个点被多少条路径经过(即被多少个集合包含)。

  忽略所有没有被集合包含的点,那么剩下的点的度数不能大于 \(2\),即剩下的图都是链。对于每一条链,维护一个单调栈来验证是否满足 \(laminar\) 即可。

AC代码:

 #include <bits/stdc++.h>
using namespace std;
const int maxn = +,DEG=; /******LCA******/
int fa[maxn][DEG];
int deg[maxn];
vector<int> G[maxn];
void BFS(int root){
queue<int> que;
deg[root]=;
fa[root][]=root;
que.push(root);
while(!que.empty()){
int tmp=que.front();
que.pop();
for(int i=;i<DEG;i++)
fa[tmp][i]=fa[fa[tmp][i-]][i-];
for(int i=;i<G[tmp].size();i++){
int v=G[tmp][i];
if(v==fa[tmp][]) continue;
deg[v]=deg[tmp]+;
fa[v][]=tmp;
que.push(v);
}
}
}
int LCA(int u,int v){
if(deg[u]>deg[v]) swap(u,v);
int hu=deg[u],hv=deg[v];
int tu=u,tv=v;
for(int det=hv-hu,i=;det;det>>=,i++){
if(det&)
tv=fa[tv][i];
}
if(tu==tv) return tu;
for(int i=DEG-;i>=;i--){
if(fa[tu][i]==fa[tv][i])
continue;
tu=fa[tu][i];
tv=fa[tv][i];
}
return fa[tu][];
} struct Path{
int u,v,len;
}pth[maxn]; //记录路径
int cnt=;
bool cmp(const Path &a,const Path &b){
if(a.len>b.len) return true;
return false;
} /******树上差分前缀和******/
int val[maxn];
void dfs1(int rt,int last){
for(int i=;i<G[rt].size();i++){
int to=G[rt][i];
if(to!=last){
dfs1(to,rt);
val[rt]+=val[to];
}
}
} int du[maxn]; bool vis[maxn];
vector<int> Next[maxn];
int que[maxn],indx[maxn];
stack<int> endpt;
bool check(int s){
int tot=;
int now=s;
while(){//对链上的点进行编号
vis[now]=true;
bool flag=false;
indx[now]=tot;
que[tot++]=now;
for(int i=;i<G[now].size();i++){
int to=G[now][i];
if(val[to]&&!vis[to]){
now=to;
flag=true;
break;
}
}
if(!flag) break;
}
while(!endpt.empty()) endpt.pop();
for(int i=;i<tot;i++){
//单调栈维护结束结点的编号(对于每一条路径,编号小的是开始结点,编号大的是结束结点)
while(!endpt.empty()&&endpt.top()<i) endpt.pop();
int now=que[i];
for(int j=;j<Next[now].size();j++){
int to=Next[now][j];
if(indx[to]>i){
if(endpt.empty()||indx[to]<=endpt.top()) endpt.push(indx[to]);
else return false; //检查是否满足条件
}
}
}
return true;
} int main(){
// freopen("in.txt","r",stdin);
int n,f;
scanf("%d%d",&n,&f);
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
BFS();
for(int i=;i<f;i++){
int u,v;
scanf("%d%d",&u,&v);
if(u==v) continue;
pth[cnt].u=u,pth[cnt].v=v;
int tfa=LCA(u,v);
pth[cnt].len=deg[u]+deg[v]-*deg[tfa];
val[u]++,val[v]++,val[tfa]--;
if(tfa!=) val[fa[tfa][]]--;
cnt++;
}
dfs1(,);
for(int i=;i<=n;i++){
if(!val[i]) continue;
for(int j=;j<G[i].size();j++){
if(val[G[i][j]]) du[i]++; //计算每一个有被路径经过的结点的度数
}
}
for(int i=;i<=n;i++){
if(du[i]>){
printf("No\n");
return ;
}
}
sort(pth,pth+cnt,cmp);
for(int i=;i<cnt;i++){
Next[pth[i].u].push_back(pth[i].v); //记录路径
Next[pth[i].v].push_back(pth[i].u);
}
for(int i=;i<=n;i++){
if(du[i]==&&!vis[i]){
if(!check(i)){
printf("No\n");
return ;
}
}
}
printf("Yes\n");
return ;
}

Gym101630L Laminar Family的更多相关文章

  1. NEERC2017:L - Laminar Family

    传送门 很容易想到,离线按路径长度从大到小排个序,用树链剖分加颗支持区间cover的线段树就好了 代码: #include<cstdio> #include<iostream> ...

  2. 【FLUENT案例】01:T型管混合器中的流动与传热

    案例目录 1 引子1.1 案例描述1.2 案例学习目标2 计算仿真目标3 启动FLUENT并读入网格4 FLUENT工作界面5 网格缩放及检查6 修改单位7 设置模型8 定义新材料9 计算域设置10 ...

  3. CFD计算

    47 求解器为flunet5/6在设置边界条件时,specify boundary types下的types中有三项关于interior,interface,internal设置,在什么情况下设置相应 ...

  4. Y+的一些讨论

    一.关于 fluent计算时壁面函数法和网格的关系,还有一个小问题 1:各位用 fluent的同仁和高手们,我想要比较好的使用 fluent软件,最重要的就是要学好理 论,在这里我想请教各位一个问题, ...

  5. X-Plane飞行模拟资源整理一

    计划开一个博客整理一下飞行仿真软件二次开发的相关内容 预计将陆续介绍X-Plane.Microsoft Flight Simulator.FlightGear三个主流飞行模拟器. 此处为目录(占坑,随 ...

  6. Disposable microfluidic devices: fabrication, function, and application Gina S. Fiorini and Daniel T

    Disposable microfluidic devices: fabrication, function, and application Gina S. Fiorini and Daniel T ...

  7. NEERC-2017

    A. Archery Tournament 用线段树套set维护横坐标区间内的所有圆,查询时在$O(\log n)$个set中二分查找即可. 时间复杂度$O(n\log^2n)$. #include& ...

  8. 【做题】neerc2017的A、C、I、L

    A - Archery Tournament 一开始往化简公式的方向去想,结果没什么用. 考虑与一条垂线相交的圆的个数.不难YY,当圆的个数最多时,大概就是这个样子的: 我们稍微推一下式子,然后就能发 ...

  9. lammps模拟化学反应(1)

    1. Can I use lammps to chemical reaction systems?Please note that you can only get as good an answer ...

随机推荐

  1. Linux笔记(shell基础,历史命令,命令补全/别名,通配符,输出重定向)

    一.shell 基础 shell是个命令解释器,提供用户和机器之间的交互 每个用户都可以拥有自己特定的shell centos7默认Shell为bash(Bourne Agin shell) 除了ba ...

  2. 数学--数论--HDU 5223 - GCD

    Describtion In mathematics, the greatest common divisor (gcd) of two or more integers, when at least ...

  3. 在Jetson TX2上安装caffe和PyCaffe

    caffe是Nvidia TensorRT最支持的深度学习框架,因此在Jetson TX2上安装caffe很有必要.顺便说一句,下面的安装是支持python3的. 先决条件 在Jetson TX2上完 ...

  4. P4430 小猴打架、P4981 父子

    prufer编码 当然你也可以理解为 Cayley 公式,其实这个公式就是prufer编码经过一步就能推出的 P4430 小猴打架 P4981 父子 这俩题差不多 先说父子,很显然题目就是让你求\(n ...

  5. 2020最新nginx+gunicorn+supervisor部署基于flask开发的项目的生产环境的详细攻略

    本攻略基于ubuntu1804的版本,服务器用的华为云的服务器,python3(python2已经在2020彻底停止维护了,所以转到python3是必须的)欢迎加我的QQ6398903,或QQ群讨论相 ...

  6. Java种sleep和wait的区别

    1,sleep方法是Thread类的静态方法,wait()是Object超类的成员方法 2,sleep()方法导致了程序暂停执行指定的时间,让出cpu该其他线程,但是他的监控状态依然保持者,当指定的时 ...

  7. dumpsys-package

    dumpsys-package ams和pms是android系统最重要的系统服务,本文解析dumpsys package命令,看哪些PMS相关的系统信息,数据结构是运行时可以查看的. 命令提示 co ...

  8. PHP导出excel文件,第二步先实现自写二维数组加入模板excel文件后导出

    今天主要研究数据加入EXCEL并导出的问题,先不从数据库提取数据导出,自己先写一个二维数组,然后遍历二维数组写入excel模板中导出,首先根据模板excel的内容书写对应的二维数组 $arr=arra ...

  9. 【FreeRTOS学习03】小白都能懂的Task Management 任务管理基本概念介绍

    在FreeRTOS中,线程的术语又可以被称之为任务,或许这样更加合适,本文将介绍任务的创建/删除,任务参数的使用,以及任务优先级: 1 软实时和硬实时 硬实时系统的任务运行正确性与响应时限是紧密相关的 ...

  10. 对文本的内容进行排序(io流、集合操作)

    package com.itheima.demo01.BufferedStream; import java.io.*; import java.util.HashMap; /* 练习: 对文本的内容 ...