collections模块

原文来自cnblog 的 Eva-J

Eva-J 介绍了collections模块的常用方法,和演示实例

在 Python cookbook 的第一章中还有一些 更加好玩的实例

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

  • 1.namedtuple: 生成可以使用名字来访问元素内容的tuple

  • 2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

  • 3.Counter: 计数器,主要用来计数

  • 4.OrderedDict: 有序字典

  • 5.defaultdict: 带有默认值的字典

1.namedtuple 命名元祖

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

>>> p = (1, 2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

这时,namedtuple就派上了用场:

>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

#namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])

2.deque: 双端队列

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque
>>> q = deque(['a', 'b', 'c']) # maxlen=3 指定队列长度
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()pop()外,还支持appendleft()popleft(),这样就可以非常高效地往头部添加或删除元素。

  • 结合heapq模块可以简单实现优先级队列

    可以参考cookbook 1.5章

3.Counter 统计计数

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})

4.OrderedDict: 有序字典

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict

>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']

5.defaultdict: 带有默认值的字典

有如下值集合 [``11``,``22``,``33``,``44``,``55``,``66``,``77``,``88``,``99``,``90.``..],将所有大于 ``66` `的值保存至字典的第一个key中,将小于 ``66` `的值保存至第二个key的值中。
即: {``'k1'``: 大于``66` `, ``'k2'``: 小于``66``}
values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = {}

for value in  values:
if value>66:
if my_dict.has_key('k1'):
my_dict['k1'].append(value)
else:
my_dict['k1'] = [value]
else:
if my_dict.has_key('k2'):
my_dict['k2'].append(value)
else:
my_dict['k2'] = [value]
from collections import defaultdict

values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = defaultdict(list)

for value in  values:
if value>66:
my_dict['k1'].append(value)
else:
my_dict['k2'].append(value)

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict

>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'

模块 collections 高级数据类型的更多相关文章

  1. python模块--collections(容器数据类型)

    Counter类(dict的子类, 计数器) 方法 返回值类型 说明 __init__ Counter 传入可迭代对象, 会对对象中的值进行计数, 值为键, 计数为值 .elements() 迭代器 ...

  2. python初探-collections容器数据类型

    collections容器数据类型是对基本数据类型的补充,简单介绍下计数器.有序字典.默认字典.可命名元祖.队列. 计数器(Counter) Counter是对字典类型的补充,用于追踪值得出现次数 c ...

  3. Python之常用模块--collections模块

    认识模块 什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用python编写的 ...

  4. Python入门篇-封装与解构和高级数据类型集合(set)和字典(dict)

    Python入门篇-封装与解构和高级数据类型集合(set)和字典(dict) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.封装和结构 #!/usr/bin/env pytho ...

  5. Python内建模块--collections

    python内建模块--collections collections是Python内建的一个集合模块,提供了许多有用的集合类. namedtuple 我们知道tuple可以表示不变集合,例如,一个点 ...

  6. Python3标准库:collections容器数据类型

    1. collections容器数据类型 collections模块包含除内置类型list.dict和tuple以外的其他容器数据类型. 1.1 ChainMap搜索多个字典 ChainMap类管理一 ...

  7. Oracle11g R2学习系列 之八高级数据类型

    所谓的高级数据类型,就是大数据类型,即BCNB(助记词:BC牛逼)+XML数据类型. B:blob,用来存储可变长度的二进制数据. C:clob,主要用来存储可变长度的字符型数据,也就是其他数据库中提 ...

  8. Delphi 基本数据类型列表 高级数据类型列表 字符类型查询列表清单

    原文:Delphi 基本数据类型列表 高级数据类型列表 字符类型查询列表清单 长长的列表文字类型文件 分类 范围 字节 备注 简单类型 序数 整数 Integer -2147483648 .. 214 ...

  9. hive高级数据类型

    hive的高级数据类型主要包括:数组类型.map类型.结构体类型.集合类型,以下将分别详细介绍. 1)数组类型 array_type:array<data_type> -- 建表语句 cr ...

随机推荐

  1. Java大浮点数精度

    BigDecimal 精度问题 BigDecimal舍入模式 ROUND_DOWN 向零舍入. 即1.55 变为 1.5 , -1.55 变为-1.5 ROUND_UP 向远离0的方向舍入 即 1.5 ...

  2. Asp.Net Core Endpoint 终结点路由之中间件应用

    一.概述 这篇文章主要分享Endpoint 终结点路由的中间件的应用场景及实践案例,不讲述其工作原理,如果需要了解工作原理的同学, 可以点击查看以下两篇解读文章: Asp.Net Core EndPo ...

  3. node跨域方法

    第一种:jsonp 参看用nodejs实现json和jsonp服务 第二种:res.wirteHeadnode部分 var http = require('http') var url = requi ...

  4. 利用canvas绘画二级树形结构图

    上周需要做一个把页面左侧列表内容拖拽到右侧区域,并且绘制成关系树的功能.看了设计图,第一反应是用canvas绘制关系线.吭哧吭哧搞定这个功能后,发现用canvas绘图,有一个很严重的缺陷.那就是如果左 ...

  5. java 构造器(构造方法)使用详细说明

    知识点 什么是构造器 构造器通常也叫构造方法.构造函数,构造器在每个项目中几乎无处不在.当你new一个对象时,就会调用构造器.构造器格式如下: [修饰符,比如public] 类名 (参数列表,可以没有 ...

  6. 数据加密标准(DES)详解

    1 简介 1.1 历史 DES(Data Encryption Standard)是由IBM公司在1974年提出的加密算法,在1977年被NIST定位数据加密标准.随后的很多年里,DES都是最流行的对 ...

  7. 内存:你跑慢点行不行?CPU:跑慢点你养我吗?内存:我不管!(内附超全思维导图)

    主存(RAM) 是一件非常重要的资源,必须要认真对待内存.虽然目前大多数内存的增长速度要比 IBM 7094 要快的多,但是,程序大小的增长要比内存的增长还快很多.不管存储器有多大,程序大小的增长速度 ...

  8. Vue项目一、node.js和npm的安装和环境搭建

    一.为什么安装node.js及npm npm npm是Node.js的包管理工具(package manager),是全球最大的生态系统,同过npm可以找到很多丰富的插件来满足项目的需求. a1.现在 ...

  9. django数据库分库migrate

    最近在研究微服务和分布式,设计到了数据库分库,记录一下 首先,创建多个数据库,如果是已经生成的数据库,可以分库,这里我是新创建的项目,刚好可以用来尝试 我是用docker创建的mysql数据库容器 拉 ...

  10. python.五角星

    import turtle turtle.pensize(4)turtle.pencolor("black") turtle.fillcolor("red")t ...