Street Numbers
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2753   Accepted: 1530

Description

A computer programmer lives in a street with houses numbered consecutively (from 1) down one side of the street. Every evening she walks her dog by leaving her house and randomly turning left or right and walking to the end of the street and back. One night
she adds up the street numbers of the houses she passes (excluding her own). The next time she walks the other way she repeats this and finds, to her astonishment, that the two sums are the same. Although this is determined in part by her house number and
in part by the number of houses in the street, she nevertheless feels that this is a desirable property for her house to have and decides that all her subsequent houses should exhibit it. 

Write a program to find pairs of numbers that satisfy this condition. To start your list the first two pairs are: (house number, last number):

         6         8

        35        49

Input

There is no input for this program.

Output

Output will consist of 10 lines each containing a pair of numbers, in increasing order with the last number, each printed right justified in a field of width 10 (as shown above).

Sample Input


Sample Output

         6         8
35 49

题意是一个计算机程序员住在一个门牌号(从1开始计)连续的街道上,每天晚上她都在这个街道上从头走到尾,有一天晚上她把她走过的门牌号相加起来,下一次她走另一条路还是相加门牌号,令她吃惊的是(我都不知道这有什么好吃惊的),两个和是相等的。让打出表house number,last number

题意的意思翻译过来就是1+2+...+x = x+(x+1)+(x+2)...+y

求x,y。

方程就变为x*(x+1)/2 = (x+y)(y-x+1)/2 => y^2+y-2*x^2=0 => (2*y+1)^2-8*x^2=0

做这道题的收获就是通过这道题了解了佩尔方程,它是一个解x^2-d*y^2=1这类方程的方法。

说起来这个佩尔方程也是逗,是费马老人家提出来的,结果欧拉记错了,写在他的书中了。有意思的是,可能是欧拉的影响力太大了,之后大家还是把费马提出的方法叫佩尔方程了,真替费马感到不值啊(之后再一想想,我有什么资格替费马感到不值。。。人家一个大定理青史留名,我一个程序员还在做POJ的题。。。做得还挺好玩)。

咳咳,反正佩尔方程的意思就是x^2-d*y^2=1的第一个解x0,y0已知的话,其余的值有一个递推公式了:

X(n)=X(n-1)*x0+d*Y(n-1)*y0

Y(n)=X(n-1)*y0+Y(n-1)*x0

知道了这个之后,程序就好写了。以后记住解x^2-d*y^2=1的方程有一个简便算法~

代码:

#include<iostream>
#include<iomanip>
#pragma warning(disable:4996)
using namespace std; int main()
{
//freopen("input.txt","r",stdin);
//freopen("out.txt","w",stdout); long long i,x0=3,y0=1,last_x=3,last_y=1,x,y;
for(i=1;i<=10;i++)
{
x=last_x*x0+8*last_y*y0;
y=last_x*y0+last_y*x0; cout<<setw(10)<<y<<setw(10)<<(x-1)/2<<endl; last_x=x;
last_y=y;
}
system("pause");
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1320:Street Numbers的更多相关文章

  1. POJ 3252:Round Numbers

    POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...

  2. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  3. POJ 1320 Street Numbers 【佩尔方程】

    任意门:http://poj.org/problem?id=1320 Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  4. POJ 1320 Street Numbers 解佩尔方程

    传送门 Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2529   Accepted: 140 ...

  5. POJ 1320 Street Numbers(佩尔方程)

    Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3078   Accepted: 1725 De ...

  6. POJ 3321:Apple Tree + HDU 3887:Counting Offspring(DFS序+树状数组)

    http://poj.org/problem?id=3321 http://acm.hdu.edu.cn/showproblem.php?pid=3887 POJ 3321: 题意:给出一棵根节点为1 ...

  7. POJ 1320 Street Numbers Pell方程

    http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b  要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...

  8. Street Numbers POJ - 1320(佩尔方程式)

    题意:就是从n到1再从1到n的各个数字之和为sum1, 然后从n到m,再从m到n的各个数字之和为sum2,求,(n,m)的前10组解. 思路: 直接建模,利用等差数列的求和公式计算一个公式(2n+1) ...

  9. POJ 1995:Raising Modulo Numbers 快速幂

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5532   Accepted: ...

随机推荐

  1. 9.2.1 hadoop mapreduce任务输出的默认排序

    任务的默认排序 MapTask和ReduceTask都会默认对数据按照key进行排序,不管逻辑上是否需要.默认是按照字典顺序排序,且实现该排序的方法是快速排序.但是map和reduce任务只能保证单个 ...

  2. 如何使用Nexus搭建Maven私服

    如何使用Nexus搭建Maven私服 听语音 | 浏览:47 | 更新:2016-09-29 10:22 1 2 3 4 5 6 7 分步阅读 一键约师傅 百度师傅最快的到家服务,最优质的电脑清灰! ...

  3. css常用设置

    距离左边和上边 style="margin-left:100px;margin-top:10px" 设置相对位置 position:absolute; position:relat ...

  4. Lesson 3 Matterhorn man

    What was the main objective of early mountain climbers? Morden alpinists try to climb mountains by a ...

  5. Django-路由Routers-SimpleRouter-DefaultRouter使用方法

    路由Routers 对于视图集ViewSet,我们除了可以自己手动指明请求方式与动作action之间的对应关系外,还可以使用Routers来帮助我们快速实现路由信息. REST framework提供 ...

  6. java.lang.ClassNotFoundException: com.microsoft.sqlserver.jdbc.SQLServerDriver java.sql.SQLException

    今天下午一直想用netbeans连接数据库,结果就是来来回回碰到这两个问题. 我还在想,连接数据库并不是一个什么困难的事情啊,我都按照教程上一步一步做的,代码什么的都感觉很好,怎么就找不到类呢,怎么就 ...

  7. HiBench成长笔记——(7) 阅读《The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis》

    <The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis>内容精选 We th ...

  8. HiBench成长笔记——(9) Centos安装Maven

    Maven的下载地址是:http://maven.apache.org/download.cgi 安装Maven非常简单,只需要将下载的压缩文件解压就可以了. cd /home/cf/app wget ...

  9. 智能充电安全管理首选SOC单芯片方案:SI24R2F

    SI24R2F简介:       SI24R2F是一颗工作在2.45GHZ ISM 频段,专为低功耗有源RFID应用场合设计,集成崁入式2.45GHZ 无线射频发射器模块.64次可编程NVM存储器模块 ...

  10. 安装数据库Typical path for xclock: /usr/X11R6/bin/xclock 错误问题

    [oracle@localhost database]$ ./runInstaller Starting Oracle Universal Installer... Checking Temp spa ...