题:http://poj.org/problem?id=2068

题意:

有两个队伍A,B,每个队伍有N个人,交叉坐。即是A(1,3,5,7.....)B(2,4,6,8....)。告诉你每个mi(1<=i<=2n)。

现在有一堆个数为S的石堆,从第1个人开始拿石头,因为是交叉坐所以也就相当于两队轮流拿石头。注意:第i个人拿石头最少拿1个最多拿mi个,拿完石堆中最后一个石头的输。问:A队有没有必胜策略?

分析:

嗯因为数据都不是很大,我们可以用记忆化搜索来求出整个博弈图。如果后继状态有后手必胜(0)那么该状态为先手必胜(1)。如果后继状态全部为先手必胜(1).那么该点状态为后手必胜(0)。当石堆个数为0的时候状态为先手必胜。也就是图的边界。这样用回溯就可以求出所有状态是先手必胜还是后手必胜。

状态表示为  DP[ i ][ j ] 表示轮到第j个人拿,当前还有 i 个石头。

#include<bits/stdc++.h>
using namespace std;
const int M=1e4+;
int dp[M][];
int a[M];
int n;
int s;
int dfs(int m,int p){
if(p==*n)///循环重新来
return dfs(m,);
if(dp[m][p]!=-)///记忆化搜索
return dp[m][p];
if(m==)///达到该状态的人必胜态
return dp[m][p]=;
for(int i=;i<=a[p];i++){
if(m<i)
break;
if(dfs(m-i,p+)==)///由必败态可转化为必胜态
return dp[m][p]=;
}
return dp[m][p]=;///到这里说明之前全都是必胜态。
}
int main(){
while(~scanf("%d",&n)&&n){
scanf("%d",&s);
for(int i=;i<*n;i++)
scanf("%d",&a[i]);
memset(dp,-,sizeof(dp));
printf("%d\n",dfs(s,));
}
return ;
}

记忆化dp博弈的更多相关文章

  1. Google Code Jam 2009, Round 1C C. Bribe the Prisoners (记忆化dp)

    Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...

  2. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  3. cf835(预处理 + 记忆化dp)

    题目链接: http://codeforces.com/contest/835/problem/D 题意: 定义 k 度回文串为左半部分和右半部分为 k - 1 度的回文串 . 给出一个字符串 s, ...

  4. cf779D(记忆化dp)

    题目链接: http://codeforces.com/problemset/problem/799/D 题意: 给出两个矩阵边长 a, b, 和 w, h, 以及一个 c 数组, 可选择 c 数组中 ...

  5. Codeforces1107E Vasya and Binary String 记忆化dp

    Codeforces1107E 记忆化dp E. Vasya and Binary String Description: Vasya has a string \(s\) of length \(n ...

  6. POJ 1088 滑雪(简单的记忆化dp)

    题目 又一道可以称之为dp的题目,虽然看了别人的代码,但是我的代码写的还是很挫,,,,,, //看了题解做的简单的记忆化dp #include<stdio.h> #include<a ...

  7. HDU 4597 Play Game (记忆化搜索博弈DP)

    题意 给出2*n个数,分两列放置,每列n个,现在alice和bob两个人依次从任意一列的对头或队尾哪一个数,alice先拿,且两个人都想拿最多,问alice最后能拿到数字总和的最大值是多少. 思路 4 ...

  8. POJ 1088 滑雪 记忆化DP

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K       Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度 ...

  9. BNU 25593 Prime Time 记忆化dp

    题目链接:点击打开链接 题意: 一个游戏由3个人轮流玩 每局游戏由当中一名玩家选择一个数字作为開始 目的:获得最小的得分 对于当前玩家 O .面对 u 这个数字 则他的操作有: 1. 计分 u +1 ...

随机推荐

  1. MyBatis:一对多、多对一处理

    多对一的处理 多对一的理解: 多个学生对应一个老师 如果对于学生这边,就是一个多对一的现象,即从学生这边关联一个老师! 数据库设计 CREATE TABLE `teacher` ( `id` INT( ...

  2. Python笔记_第五篇_Python数据分析基础教程_相关安装和版本查看

    1. IDE说明: 所有的案例用Anacoda中的Jupiter工具进行交互式讲解. 2. 版本和安装: NumPy从如下网站安装:http://sourceforge.net/projects/nu ...

  3. python期末考试复习

    期末考试复习 补修的python跟着大一一起学,考试肯定不会出难,于是就敲了一些代码,把他们放到博客上,来记录一下 代码都是一段一段的,且python代码不是很多,所以我都写到了一个文件里,作为练习 ...

  4. JDK安装 - Linux环境

    JDK安装 - Linux环境 1. 下载 :https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-21331 ...

  5. .equal()和==的区别

    1.首先,equal和==最根本的区别在于equal是一个方法,而==是一个运算符. 2.一般来说,==运算符比较的是在内存中的物理地址,.equal()比较的是哈希算法值是否相等(即hashcode ...

  6. 无车承运前世今生,5G货运管家期待您的加入

    历时三年的无车承运人试点工作结束,从2020年1月1日起,将执行新的暂行<办法>,在这样一个承前启后的阶段,无车承运人的命运如何?网络货运经营者又是何物? 在新赛道下,将迎来什么样的机遇和 ...

  7. 《打造扛得住的MySQL数据库架构》第4章 MySQL数据库结构优化

    4-1 数据库结构优化介绍 良好的数据库逻辑设计和物理设计是数据库获得高性能的基础. 1.减少不必要的数据冗余. 2.尽量避免数据维护中出现更新,插入和删除异常. 插入异常:如果表中的某个实体随着另一 ...

  8. 计蒜客 密码锁(BFS)

    https://www.jisuanke.com/course/1797/121114 Description 现在一个紧急的任务是打开一个密码锁.密码由四位数字组成,每个数字从 1 到 9 进行编号 ...

  9. tensorflow模型

    图像模型 YOLOv3 , 地址 https://pjreddie.com/darknet/yolo/ vgg , 参考 https://github.com/tensorflow/models/bl ...

  10. py02_01:初识模块

    模块的定义:模块是一个包含所有你定义的函数和变量的文件,其后缀名是.py.模块可以被别的程序引入,以使用该模块中的函数等功能.(可以理解为:库) 模块分为三类 ( 1. 标准库:     直接导入使用 ...