For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q.
Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0 思路:ST表板子题,ST[i][j]表示下表从i到i+2^j-1的最值,查询时,已知l与r,长度len=r-l+1,且2^log2(len)>len/2,令k=log2(len),ST[l][k]肯定超过了长度的一半,反向取后侧,r-m+1=2^len,另一侧就是ST[r-2^k+1][k]
const int maxm = 5e4+;

int Max[maxm][], Min[maxm][], N, Q;

int main() {
scanf("%d%d", &N, &Q);
int t, l, r;
for(int i = ; i <= N; ++i) {
scanf("%d", &t);
Max[i][] = Min[i][] = t;
}
for(int k = ; (<<k) <= N; ++k) {
for(int i = ; i+(<<k)- <= N; ++i) {
Max[i][k] = max(Max[i][k-], Max[i+(<<(k-))][k-]);
Min[i][k] = min(Min[i][k-], Min[i+(<<(k-))][k-]);
}
}
for(int i = ; i < Q; ++i) {
scanf("%d%d", &l, &r);
int k = log((double)(r-l+)) / log(2.0);
printf("%d\n", max(Max[l][k],Max[r-(<<k)+][k]) - min(Min[l][k], Min[r-(<<k)+][k]));
}
return ;
}
												

Day6 - H - Balanced Lineup POJ - 3264的更多相关文章

  1. (线段树)Balanced Lineup --POJ --3264

    链接: 对于POJ老是爆,我也是醉了, 链接等等再发吧! http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82832#problem/G 只 ...

  2. Balanced Lineup POJ - 3264

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...

  3. G - Balanced Lineup POJ - 3264 线段树最大最小值区间查询模版题

    题意 给出一个序列  每次查询区间的max-min是多少 思路:直接维护max 和min即可  写两个query分别查最大最小值 #include<cstdio> #include< ...

  4. Gold Balanced Lineup - poj 3274 (hash)

    这题,看到别人的解题报告做出来的,分析: 大概意思就是: 数组sum[i][j]表示从第1到第i头cow属性j的出现次数. 所以题目要求等价为: 求满足 sum[i][0]-sum[j][0]=sum ...

  5. Gold Balanced Lineup POJ - 3274

    Description Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been abl ...

  6. poj 3264 Balanced Lineup (RMQ)

    /******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...

  7. G - Balanced Lineup

    G - Balanced Lineup POJ - 3264 思路:水题,线段树的基本操作即可. #include<cstdio> #include<cstring> #inc ...

  8. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

  9. POJ - 3264——Balanced Lineup(入门线段树)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 68466   Accepted: 31752 ...

随机推荐

  1. 0X01应用程序黑客技术

    前言 该文章主要是讲解了常见的应用程序黑客技术基本概念,包括消息钩取,API钩取,DLL注入,代码注入 天象独行 0X01:消息钩取 原理:在我们通过键盘,鼠标等输入信息过程中,Windows会通过钩 ...

  2. ios中时间倒计时

    博客地址 https://github.com/sundayios/SQCountTimeDown.git

  3. tomcat注册为windows服务

    打开CMD,进入到Tomcat的bin目录,执行命令:service.bat install  [service_name] 如果卸载服务,可以执行:sc delete [service_name]

  4. spring demo

    参考: https://www.tutorialspoint.com/spring/spring_applicationcontext_container.htm

  5. LeetCode 19. Remove Nth Node From End of List(删除链表中倒数第N个节点)

    题意:删除链表中倒数第N个节点. 法一:递归.每次统计当前链表长度,如果等于N,则return head -> next,即删除倒数第N个节点:否则的话,问题转化为子问题“对head->n ...

  6. FF获6亿美元投资九城或许比贾跃亭更着急

    互联网企业第九城市(以下简称"九城")确认,已透过旗下子公司与总部位于美国加州的法拉第未来公司签定协议,双方共同建立合资公司,在中国制造.营销及运营电动汽车.根据合资公司协议条款, ...

  7. 使用mvn deploy命令将本地jar包上传到maven私服

    记录一下,以后少走弯路 前提:已经搭建好nexus maven私服,地址192.168.110.240:9091 在maven的setting.xml中找到<mirrors></mi ...

  8. 利用django打造自己的工作流平台(二):疫情统计系统

    相关文章: 利用django打造自己的工作流平台(一):从EXCEL到流程化运作 本文是“利用django打造自己的工作流平台”系列文章的第二篇,在自己开发的工作流平台中添加了一个用于排查统计可能受感 ...

  9. mkvirtualenv: 未找到命令的解决方法

    1.升级python包管理工具pip pip install --upgrade pip 备注:当你想升级一个包的时候 `pip install --upgrade 包名` 2.python虚拟环境安 ...

  10. Idea牛逼插件,拿走不谢

    1.grep console java 开发的过程中,日志都会输出到console,输出的内容是非常多的,所以需要有一个工具可以方便的查找日志,或者可以非常明显显示我们关注的内容,grep conso ...