For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q.
Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0 思路:ST表板子题,ST[i][j]表示下表从i到i+2^j-1的最值,查询时,已知l与r,长度len=r-l+1,且2^log2(len)>len/2,令k=log2(len),ST[l][k]肯定超过了长度的一半,反向取后侧,r-m+1=2^len,另一侧就是ST[r-2^k+1][k]
const int maxm = 5e4+;

int Max[maxm][], Min[maxm][], N, Q;

int main() {
scanf("%d%d", &N, &Q);
int t, l, r;
for(int i = ; i <= N; ++i) {
scanf("%d", &t);
Max[i][] = Min[i][] = t;
}
for(int k = ; (<<k) <= N; ++k) {
for(int i = ; i+(<<k)- <= N; ++i) {
Max[i][k] = max(Max[i][k-], Max[i+(<<(k-))][k-]);
Min[i][k] = min(Min[i][k-], Min[i+(<<(k-))][k-]);
}
}
for(int i = ; i < Q; ++i) {
scanf("%d%d", &l, &r);
int k = log((double)(r-l+)) / log(2.0);
printf("%d\n", max(Max[l][k],Max[r-(<<k)+][k]) - min(Min[l][k], Min[r-(<<k)+][k]));
}
return ;
}
												

Day6 - H - Balanced Lineup POJ - 3264的更多相关文章

  1. (线段树)Balanced Lineup --POJ --3264

    链接: 对于POJ老是爆,我也是醉了, 链接等等再发吧! http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82832#problem/G 只 ...

  2. Balanced Lineup POJ - 3264

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...

  3. G - Balanced Lineup POJ - 3264 线段树最大最小值区间查询模版题

    题意 给出一个序列  每次查询区间的max-min是多少 思路:直接维护max 和min即可  写两个query分别查最大最小值 #include<cstdio> #include< ...

  4. Gold Balanced Lineup - poj 3274 (hash)

    这题,看到别人的解题报告做出来的,分析: 大概意思就是: 数组sum[i][j]表示从第1到第i头cow属性j的出现次数. 所以题目要求等价为: 求满足 sum[i][0]-sum[j][0]=sum ...

  5. Gold Balanced Lineup POJ - 3274

    Description Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been abl ...

  6. poj 3264 Balanced Lineup (RMQ)

    /******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...

  7. G - Balanced Lineup

    G - Balanced Lineup POJ - 3264 思路:水题,线段树的基本操作即可. #include<cstdio> #include<cstring> #inc ...

  8. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

  9. POJ - 3264——Balanced Lineup(入门线段树)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 68466   Accepted: 31752 ...

随机推荐

  1. unittest中的parameterized参数化

    一.安装插件 pip install parameterized 二.有默认参数情况与没有默认参数情况---1 注意:这种写法,只能给单个用例进行参数化,不能给多个用例使用,要每个用例都进行参数化. ...

  2. JS获取CHECKBOX的值 AND 两个CHECKBOX 循环选中

    获取多选按钮的值 var chk_value = ''; $('input[data-action="checkRole"]:checked').each(function(){ ...

  3. Mayor's posters-POJ2528 区间染色+离散化

    题意: 在一面长度为10000000 的墙上贴广告,告诉你每张海报的l,r(1 <= li <= ri <= 10000000.),让你求最后有几张海报露出来 链接:http://p ...

  4. java 依赖注入

    https://blog.csdn.net/coderder/article/details/51897721 前言 在软件工程领域,依赖注入(Dependency Injection)是用于实现控制 ...

  5. 建设基于TensorFlow的深度学习环境

    一.使用yum安装git 1.查看系统是否已经安装git git --version 2.yum 安装git yum install git 3.安装成功 git --version 4.进入指定目录 ...

  6. vue + element ui table表格二次封装 常用功能

    因为在做后台管理项目的时候用到了大量的表格, 且功能大多相同,因此封装了一些常用的功能, 方便多次复用. 组件封装代码: <template> <el-table :data=&qu ...

  7. Oracle常用命令复习(备考资料)

    Oracle期末考试复习资料,大概的总结了常用的命令,不包括基础理论知识,有的不太考的东西没有整理.资料整理是在有道云笔记里完成的,在这里重新编辑太麻烦了,就附个链接了. 文档:Oracle命令复习2 ...

  8. uniGUI之MainModule(12)

    1]必须设置.  一个 user 一个, 在此放数据库控件是各 user 独立 2]常用属性: 应用 MainModule 正确的方法是将连接组件放置在 MainModule 上, 并将数据集放在窗体 ...

  9. Java程序生成exe可执行文件

    Java程序打包成exe可执行文件,分为两大步骤. 第一步:将Java程序通过Eclipse或者Myeclipse导成Jar包 第二步:通过exe4j讲Jar包程序生成exe可执行文件 第一步详解: ...

  10. 学习Javascript的8张思维导图

    分别归类为: javascript变量 javascript运算符 javascript数组 javascript流程语句 javascript字符串函数 javascript函数基础 javascr ...