For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q.
Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0 思路:ST表板子题,ST[i][j]表示下表从i到i+2^j-1的最值,查询时,已知l与r,长度len=r-l+1,且2^log2(len)>len/2,令k=log2(len),ST[l][k]肯定超过了长度的一半,反向取后侧,r-m+1=2^len,另一侧就是ST[r-2^k+1][k]
const int maxm = 5e4+;

int Max[maxm][], Min[maxm][], N, Q;

int main() {
scanf("%d%d", &N, &Q);
int t, l, r;
for(int i = ; i <= N; ++i) {
scanf("%d", &t);
Max[i][] = Min[i][] = t;
}
for(int k = ; (<<k) <= N; ++k) {
for(int i = ; i+(<<k)- <= N; ++i) {
Max[i][k] = max(Max[i][k-], Max[i+(<<(k-))][k-]);
Min[i][k] = min(Min[i][k-], Min[i+(<<(k-))][k-]);
}
}
for(int i = ; i < Q; ++i) {
scanf("%d%d", &l, &r);
int k = log((double)(r-l+)) / log(2.0);
printf("%d\n", max(Max[l][k],Max[r-(<<k)+][k]) - min(Min[l][k], Min[r-(<<k)+][k]));
}
return ;
}
												

Day6 - H - Balanced Lineup POJ - 3264的更多相关文章

  1. (线段树)Balanced Lineup --POJ --3264

    链接: 对于POJ老是爆,我也是醉了, 链接等等再发吧! http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82832#problem/G 只 ...

  2. Balanced Lineup POJ - 3264

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...

  3. G - Balanced Lineup POJ - 3264 线段树最大最小值区间查询模版题

    题意 给出一个序列  每次查询区间的max-min是多少 思路:直接维护max 和min即可  写两个query分别查最大最小值 #include<cstdio> #include< ...

  4. Gold Balanced Lineup - poj 3274 (hash)

    这题,看到别人的解题报告做出来的,分析: 大概意思就是: 数组sum[i][j]表示从第1到第i头cow属性j的出现次数. 所以题目要求等价为: 求满足 sum[i][0]-sum[j][0]=sum ...

  5. Gold Balanced Lineup POJ - 3274

    Description Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been abl ...

  6. poj 3264 Balanced Lineup (RMQ)

    /******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...

  7. G - Balanced Lineup

    G - Balanced Lineup POJ - 3264 思路:水题,线段树的基本操作即可. #include<cstdio> #include<cstring> #inc ...

  8. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

  9. POJ - 3264——Balanced Lineup(入门线段树)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 68466   Accepted: 31752 ...

随机推荐

  1. Nessus忘记用户名和密码

    以管理员身份运行cmd,切换到Nessus的安装目录,执行以下操作.

  2. 关于sarima模型的描述,时间序列的理论与方法(第二版)(美 布洛克威尔)有一部分比较值得看

  3. 让 el-dialog 居中,并且内容多的时候内部可以滚动

    .el-dialog { position: absolute; top: 50%; left: 50%; margin: 0 !important; transform: translate(-50 ...

  4. 【剑指Offer面试编程题】题目1355:扑克牌顺子--九度OJ

    题目描述: LL今天心情特别好,因为他去买了一副扑克牌,发现里面居然有2个大王,2个小王(一副牌原本是54张^_^)...他随机从中抽出了5张牌,想测测自己的手气,看看能不能抽到顺子,如果抽到的话,他 ...

  5. 名称空间using namespace std

    写再最前面:摘录于柳神的笔记 虽然C++是一门面向对象语言,但是对于刷算法这件事而言,我们并不需要掌握它⾯向对象的部分-只 需要掌握刷算法的时候需要用到的部分(基本输⼊输出.STL标准模板库. str ...

  6. python中numpy.concatenate()函数的使用

    numpy库数组拼接np.concatenate 原文:https://blog.csdn.net/zyl1042635242/article/details/43162031 思路:numpy提供了 ...

  7. springboot 重写 AuthorizationFilter

    原文链接:https://www.cnblogs.com/zeussbook/p/10778532.html

  8. 「Luogu P2824 [HEOI2016/TJOI2016]排序」

    一道十分神奇的线段树题,做法十分的有趣. 前置芝士 线段树:一个十分基础的数据结构,在这道题中起了至关重要的作用. 一种基于01串的神奇的二分思想:在模拟赛中出现了这道题,可以先去做一下,这样可能有助 ...

  9. php接口安全设计浅谈

    接口的安全性主要围绕Token.Timestamp和Sign三个机制展开设计,保证接口的数据不会被篡改和重复调用,下面具体来看: (1)Token授权机制:(Token是客户端访问服务端的凭证)--用 ...

  10. FFmpeg调用c语言SDK实现日志的打印

    日志文件的三大步 // 导入头文件 #include <libavutil/log.h> // 设置日志级别 av_log_set_level(AV_LOG_DEBUG); //DEBUG ...