For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q.
Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0 思路:ST表板子题,ST[i][j]表示下表从i到i+2^j-1的最值,查询时,已知l与r,长度len=r-l+1,且2^log2(len)>len/2,令k=log2(len),ST[l][k]肯定超过了长度的一半,反向取后侧,r-m+1=2^len,另一侧就是ST[r-2^k+1][k]
const int maxm = 5e4+;

int Max[maxm][], Min[maxm][], N, Q;

int main() {
scanf("%d%d", &N, &Q);
int t, l, r;
for(int i = ; i <= N; ++i) {
scanf("%d", &t);
Max[i][] = Min[i][] = t;
}
for(int k = ; (<<k) <= N; ++k) {
for(int i = ; i+(<<k)- <= N; ++i) {
Max[i][k] = max(Max[i][k-], Max[i+(<<(k-))][k-]);
Min[i][k] = min(Min[i][k-], Min[i+(<<(k-))][k-]);
}
}
for(int i = ; i < Q; ++i) {
scanf("%d%d", &l, &r);
int k = log((double)(r-l+)) / log(2.0);
printf("%d\n", max(Max[l][k],Max[r-(<<k)+][k]) - min(Min[l][k], Min[r-(<<k)+][k]));
}
return ;
}
												

Day6 - H - Balanced Lineup POJ - 3264的更多相关文章

  1. (线段树)Balanced Lineup --POJ --3264

    链接: 对于POJ老是爆,我也是醉了, 链接等等再发吧! http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82832#problem/G 只 ...

  2. Balanced Lineup POJ - 3264

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...

  3. G - Balanced Lineup POJ - 3264 线段树最大最小值区间查询模版题

    题意 给出一个序列  每次查询区间的max-min是多少 思路:直接维护max 和min即可  写两个query分别查最大最小值 #include<cstdio> #include< ...

  4. Gold Balanced Lineup - poj 3274 (hash)

    这题,看到别人的解题报告做出来的,分析: 大概意思就是: 数组sum[i][j]表示从第1到第i头cow属性j的出现次数. 所以题目要求等价为: 求满足 sum[i][0]-sum[j][0]=sum ...

  5. Gold Balanced Lineup POJ - 3274

    Description Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been abl ...

  6. poj 3264 Balanced Lineup (RMQ)

    /******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...

  7. G - Balanced Lineup

    G - Balanced Lineup POJ - 3264 思路:水题,线段树的基本操作即可. #include<cstdio> #include<cstring> #inc ...

  8. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

  9. POJ - 3264——Balanced Lineup(入门线段树)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 68466   Accepted: 31752 ...

随机推荐

  1. crm系统和e_store商场的比较总结

    e_store用了:Java.Servlet.JSP.Oracle.JQuery.Mybatis,tomcat技术 crm用了 :Java.JSP.Oracle.JQuery,Mybatis,spri ...

  2. Docker示例命令

    1.docker run -t -i -v /root/workspace/node:/home/exam:rw docker.io/node bin/sh    -t 给容器挂载一个伪终端    - ...

  3. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 排版:引用(Blockquote)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表格:让表格更加紧凑

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  5. JS 瀑布流效果

    JS瀑布流效果 <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> < ...

  6. git rebase 与git merge 小结

    git merge是用来合并两个分支的. $ git merge b   将b分支合并到当前分支 同样  $ git rebase b ,也是把 b分支合并到当前分支 ---------------- ...

  7. MySQL的默认隔离级别的实现依赖于MVCC和锁,准确点说就是一致性读和锁。

    MySQL的默认隔离级别的实现依赖于MVCC和锁,准确点说就是一致性读和锁.

  8. Py西游攻关之基础数据类型(一)-数字字符串字节布尔

    Py西游攻关之基础数据类型 - Yuan先生 https://www.cnblogs.com/yuanchenqi/articles/5782764.html 数据类型 计算机顾名思义就是可以做数学计 ...

  9. Flask - 总结

    1. Flask.Django.Tornado框架区别 2. Flask快速入门 3. 配置文件 4. 路由系统 5. 模板 6. 请求&响应相关 7. session & cooki ...

  10. LeetCode刷题--21.合并两个有序链表(简单)

    题目描述 将两个有序链表合并为一个新的有序链表并返回.新链表是通过拼接给定的两个链表的所有节点组成的. 示例: 输入:1 -> 2 -> 4 ,1 -> 3 -> 4 输出:1 ...