《动手学深度学习》系列笔记 —— 语言模型(n元语法、随机采样、连续采样)
一段自然语言文本可以看作是一个离散时间序列,给定一个长度为\(T\)的词的序列\(w_1, w_2, \ldots, w_T\),语言模型的目标就是评估该序列是否合理,即计算该序列的概率:
\]
1. 语言模型
假设序列\(w_1, w_2, \ldots, w_T\)中的每个词是依次生成的,我们有
例如,一段含有4个词的文本序列的概率
\]
语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如,\(w_1\)的概率可以计算为:
其中\(n(w_1)\)为语料库中以\(w_1\)作为第一个词的文本的数量,\(n\)为语料库中文本的总数量。
类似的,给定\(w_1\)情况下,\(w_2\)的条件概率可以计算为:
其中\(n(w_1, w_2)\)为语料库中以\(w_1\)作为第一个词,\(w_2\)作为第二个词的文本的数量。
2. n元语法
序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。\(n\)元语法通过马尔可夫假设(一个词的出现只与前面\(n\)个词相关,即\(n\)阶马尔可夫链(Markov chain of order \(n\)))来简化模型。如果\(n=1\),那么有\(P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2)\)。基于\(n-1\)阶马尔可夫链,我们可以将语言模型改写为
\]
以上也叫\(n\)元语法(\(n\)-grams),它是基于\(n - 1\)阶马尔可夫链的概率语言模型。例如,当\(n=2\)时,含有4个词的文本序列的概率就可以改写为:
当\(n\)分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。
例如,长度为4的序列\(w_1, w_2, w_3, w_4\)在一元语法、二元语法和三元语法中的概率分别为
当\(n\)较小时,\(n\)元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当\(n\)较大时,\(n\)元语法需要计算并存储大量的词频和多词相邻频率。
- n元语法的缺陷有哪些?
- 参数空间过大
- 数据稀疏
3. 语言模型数据集
3.1 读取数据集
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]
3.2 建立字符索引
idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射
char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射
vocab_size = len(char_to_idx)
print(vocab_size)
corpus_indices = [char_to_idx[char] for char in corpus_chars] # 将每个字符转化为索引,得到一个索引的序列
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)
定义函数load_data_jay_lyrics
,在后续章节中直接调用。
def load_data_jay_lyrics():
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
corpus_chars = f.read()
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[0:10000]
idx_to_char = list(set(corpus_chars))
char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
vocab_size = len(char_to_idx)
corpus_indices = [char_to_idx[char] for char in corpus_chars]
return corpus_indices, char_to_idx, idx_to_char, vocab_size
4. 时序数据的采样
在训练中我们需要每次随机读取小批量样本和标签。与之前章节的实验数据不同的是,时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”,即\(X\)=“想要有直升”,\(Y\)=“要有直升机”。
现在我们考虑序列“想要有直升机,想要和你飞到宇宙去”,如果时间步数为5,有以下可能的样本和标签:
- \(X\):“想要有直升”,\(Y\):“要有直升机”
- \(X\):“要有直升机”,\(Y\):“有直升机,”
- \(X\):“有直升机,”,\(Y\):“直升机,想”
- ...
- \(X\):“要和你飞到”,\(Y\):“和你飞到宇”
- \(X\):“和你飞到宇”,\(Y\):“你飞到宇宙”
- \(X\):“你飞到宇宙”,\(Y\):“飞到宇宙去”
可以看到,如果序列的长度为\(T\),时间步数为\(n\),那么一共有\(T-n\)个合法的样本,但是这些样本有大量的重合,我们通常采用更加高效的采样方式。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。
4.1 随机采样
下面的代码每次从数据里随机采样一个小批量。其中批量大小batch_size
是每个小批量的样本数,num_steps
是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。
import torch
import random
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
# 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符
num_examples = (len(corpus_indices) - 1) // num_steps # 下取整,得到不重叠情况下的样本个数
example_indices = [i * num_steps for i in range(num_examples)] # 每个样本的第一个字符在corpus_indices中的下标
random.shuffle(example_indices)
def _data(i):
# 返回从i开始的长为num_steps的序列
return corpus_indices[i: i + num_steps]
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for i in range(0, num_examples, batch_size):
# 每次选出batch_size个随机样本
batch_indices = example_indices[i: i + batch_size] # 当前batch的各个样本的首字符的下标
X = [_data(j) for j in batch_indices]
Y = [_data(j + 1) for j in batch_indices]
yield torch.tensor(X, device=device), torch.tensor(Y, device=device)
测试一下这个函数,我们输入从0到29的连续整数作为一个人工序列,设批量大小和时间步数分别为2和6,打印随机采样每次读取的小批量样本的输入X
和标签Y
。
my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):
print('X: ', X, '\nY:', Y, '\n')
4.2 相邻采样
在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。
def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
corpus_len = len(corpus_indices) // batch_size * batch_size # 保留下来的序列的长度
corpus_indices = corpus_indices[: corpus_len] # 仅保留前corpus_len个字符
indices = torch.tensor(corpus_indices, device=device)
indices = indices.view(batch_size, -1) # resize成(batch_size, )
batch_num = (indices.shape[1] - 1) // num_steps
for i in range(batch_num):
i = i * num_steps
X = indices[:, i: i + num_steps]
Y = indices[:, i + 1: i + num_steps + 1]
yield X, Y
同样的设置下,打印相邻采样每次读取的小批量样本的输入X
和标签Y
。相邻的两个随机小批量在原始序列上的位置相毗邻。
for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=6):
print('X: ', X, '\nY:', Y, '\n')
my_seq = list(range(11))
for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=2):
print('X: ', X, '\nY:', Y, '\n')
《动手学深度学习》系列笔记 —— 语言模型(n元语法、随机采样、连续采样)的更多相关文章
- 对比《动手学深度学习》 PDF代码+《神经网络与深度学习 》PDF
随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点.AlphaGo背后的工作原理"深度学习"也跳入大众的视野.什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中 ...
- 【动手学深度学习】Jupyter notebook中 import mxnet出错
问题描述 打开d2l-zh目录,使用jupyter notebook打开文件运行,import mxnet 出现无法导入mxnet模块的问题, 但是命令行运行是可以导入mxnet模块的. 原因: 激活 ...
- 小白学习之pytorch框架(2)-动手学深度学习(begin-random.shuffle()、torch.index_select()、nn.Module、nn.Sequential())
在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比 ...
- 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...
- 动手学深度学习14- pytorch Dropout 实现与原理
方法 从零开始实现 定义模型参数 网络 评估函数 优化方法 定义损失函数 数据提取与训练评估 pytorch简洁实现 小结 针对深度学习中的过拟合问题,通常使用丢弃法(dropout),丢弃法有很多的 ...
- 动手学深度学习9-多层感知机pytorch
多层感知机 隐藏层 激活函数 小结 多层感知机 之前已经介绍过了线性回归和softmax回归在内的单层神经网络,然后深度学习主要学习多层模型,后续将以多层感知机(multilayer percetro ...
- 动手学深度学习6-认识Fashion_MNIST图像数据集
获取数据集 读取小批量样本 小结 本节将使用torchvision包,它是服务于pytorch深度学习框架的,主要用来构建计算机视觉模型. torchvision主要由以下几个部分构成: torchv ...
- 动手学深度学习1- pytorch初学
pytorch 初学 Tensors 创建空的tensor 创建随机的一个随机数矩阵 创建0元素的矩阵 直接从已经数据创建tensor 创建新的矩阵 计算操作 加法操作 转化形状 tensor 与nu ...
- mxnet 动手学深度学习
http://zh.gluon.ai/chapter_crashcourse/introduction.html 强化学习(Reinforcement Learning) 如果你真的有兴趣用机器学习开 ...
随机推荐
- 明明的随机数(0)<P2006_1>
明明的随机数 (random.pas/c/cpp) [问题描述] 明明想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用计算机生成了N个1到1000之间的随机整数(N≤100),对于其中 ...
- 登陆页面Sql注入(绕过)
如图,看到这道题的时候发觉之前做过一个类似的手工注入: 不过这次手注会失败,后台过滤了sql语句里的一些东西,但我们并不知道过滤了什么 到这里我就基本上没辙了,不过查询了资料以后发现sqlmap可以对 ...
- Vue日常报错
报错信息: Error: Cannot find module 'webpack/bin/config-yargs' at Function.Module._resolveFilename (inte ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 排版:设定单词首字母大写
<!DOCTYPE html> <html> <head> <title>菜鸟教程(runoob.com)</title> <meta ...
- Linux命令:ping命令
ping命令:类似于windows的ping命令,用于测试网络主机ICMP请求回应的 ping选项 ping -c # # 执行次数 -w # #测试 ...
- springboot 不停服动态更新定时任务时间(转)
转 https://blog.csdn.net/u012129558/article/details/80834303 Spring框架自3.0版本起,自带了任务调度功能,好比是一个轻量级的Quart ...
- 无root开热点教程
本教程适用于无root类开热点,理论上动态云免等均可使用 热点成功测试方法与免流测试方法相同,一般都为查看ip所在地区 热点端 1.打开个人热点 2.如果是tinyproxy可打开右上角菜单,点击热点 ...
- jwt 认证
目录 jwt 认证示意图 jwt 认证算法:签发与检验 drf 项目的 jwt 认证开发流程(重点) drf-jwt 框架基本使用 token 刷新机制(了解) jwt 认证示意图 jwt 优势 1 ...
- cgpwn2-嫖来的wp
本想练习pwn的题目活跃下思维,但是接触后发现完全不懂,gg 然后就多方搜集,弄来了一些工具(IDA pro.pwntool)结果自己还是不会用,又是一番刷视频,结果看完又是一脸懵. 只记得一个快捷键 ...
- 插入和查询HBase速度都比较慢
表层问题:插入和查询HBase速度比较慢 排查一,查看HBase节点状态,发现正常运行: 排查二,查看访问HBase服务的状态,发现服务停止: 依次点击服务实例,查看服务状态 133和135节点上的服 ...