化 Bernoulli 方程为一阶线性微分方程
形如
$ {\displaystyle \frac{dy}{dx}+p(x)y=q(x)y^n(n\neq 0,1) \ \ \ \ \ (1)}$
的方程为 Bernoulli 方程.现在我们考虑其解法.当 $ y\neq 0$ 时,(1) 的两边同时乘以 $ y^{-n}$,得到
$ {\displaystyle y^{-n}\frac{dy}{dx}+y^{-n+1}p(x)=q(x). \ \ \ \ \ (2)}$
令 $ z=y^{-n+1}$,可得
$ {\displaystyle \frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx}. }$
因此,(2) 化为
$ {\displaystyle \frac{1}{1-n}\frac{dz}{dx}+zp(x)=q(x). \ \ \ \ \ (3)}$
这就化为了关于 $ x$ 和 $ z$ 的一阶线性方程.
化 Bernoulli 方程为一阶线性微分方程的更多相关文章
- Python-sympy科学计算与数据处理(方程,微分,微分方程,积分)
方程 a,b,c,x = symbols("a b c x") my_eq = Eq(a*x**2+b*x+c,0) solve(my_eq,x) Out[12]: [(-b + ...
- Google Code Jam 2008 Round 1A C Numbers(矩阵快速幂+化简方程,好题)
Problem C. Numbers This contest is open for practice. You can try every problem as many times as you ...
- math课本复习
第七章 微分方程 第一节 微分方程的基本概念 未知函数.未知函数的倒数与自变量之间的关系的方程,叫做微分方程. 第二节 可分离变量的微分方程 第三节 齐次方程 第四节 一阶线性微分方程 总结:任 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
- 微分方程——基本概念和常微分方程的发展史
1.2 基本概念和常微分方程的发展史 自变量.未知函数均为实值的微分方程称为实值微分方程:未知函数取复值或变量及未知函数均取复值时称为复值微分方程.若无特别声明,以下均指实变量的实值微分方程. 1.2 ...
- 线性SVM的推导
线性SVM算法的一般过程 线性SVM的推导 超平面方程 SVM是用来分类的.给定一系列输入数据(n维向量),需要找到一个切分界线(n-1维的超平面),这里假定数据是线性可分的.比如,二维数据的超平面是 ...
- java实现图像的直方图均衡以及灰度线性变化,灰度拉伸
写了四个方法,分别实现图片的灰度化,直方图均衡,灰度线性变化,灰度拉伸,其中好多地方特别是灰度拉伸这一块觉得自己实现的有问题,请大大们多多指教. import java.awt.Image; impo ...
- 【BZOJ4004】装备购买(线性基)
[BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...
- 线性判别函数-Fisher 线性判别
这是我在上模式识别课程时的内容,也有参考这里. 线性判别函数的基本概念 判别函数为线性的情况的一般表达式 式中x是d 维特征向量,又称样本向量, 称为权向量, 分别表示为 是个常数,称为阈值权. 设样 ...
随机推荐
- P1049 数列的片段和
P1049 数列的片段和 转跳点:
- UVA - 712 S-Trees(S树)
题意:0往左走,1往右走,已知所有叶子的值,每个查询都是根结点到叶子结点的路径,路径的每一个点分别对应着x1,x2,x3……但是实际上的S树的路径可能并非是x1,x2,x3…… 分析:先存路径变量的顺 ...
- css画布
绘制基本图形 绘制直线 <style> .canvas{ } </style> <canvas id="myCanvas1" style=" ...
- 11.swoole学习笔记--进程信号触发器
<?php //触发函数--异步执行 swoole_process::signal(SIGALRM,function(){ ; echo "$i \n"; $i++; ){ ...
- 如何让手游内存占用更小?从内存消耗iOS实时统计开始
为什么iOS内存使用过多会崩溃,性能会下降?腾讯游戏学院专家Devlin在本文给了解释,如何让手游内存占用更小?从内存消耗iOS实时统计开始. 一.问题 在之前的手游项目中,内存使用过多,都开始崩溃了 ...
- [转]SparkSQL的自适应执行---Adaptive Execution
1 背景 本文介绍的 Adaptive Execution 将可以根据执行过程中的中间数据优化后续执行,从而提高整体执行效率.核心在于两点 执行计划可动态调整 调整的依据是中间结果的精确统计信息 2 ...
- java04异常处理课堂总结
一,动手动脑 1,请阅读并运行AboutException.java示例,然后通过后面的几页PPT了解Java中实现异常处理的基础知识. import javax.swing.*; class Abo ...
- HDU - 5591 ZYB's Game(博弈)
题意:A和B两人在1~N中选数字.已知1<=X<=N,谁先选中X谁就输.每当一个人选出一个不是X的数,裁判都会说明这个数比X大还是小,与此同时,可选范围随之缩小.已知A先选,求满足能让B赢 ...
- 每天一点点之 taro 框架开发 - 事件处理与样式表
1.方法调用 state = { name:'张三' } test(){ this.state.name } <button onClick={ this.test.bind(this) } / ...
- tortoiseGit 的简单使用说明
拉取仓库到本地 参考 下面几张图片,把仓库拉取到本地. 本地修改并推送 进入文件夹后,按照 下面几张图片切换到本地的开发分支 当修改完成之后,按照 下面几张图片 的方法把修改推送到远程仓库的开发分支. ...