形如

$ {\displaystyle \frac{dy}{dx}+p(x)y=q(x)y^n(n\neq 0,1) \ \ \ \ \ (1)}$

的方程为 Bernoulli 方程.现在我们考虑其解法.当 $ y\neq 0$ 时,(1) 的两边同时乘以 $ y^{-n}$,得到

$ {\displaystyle y^{-n}\frac{dy}{dx}+y^{-n+1}p(x)=q(x). \ \ \ \ \ (2)}$

令 $ z=y^{-n+1}$,可得

$ {\displaystyle \frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx}. }$

因此,(2) 化为

$ {\displaystyle \frac{1}{1-n}\frac{dz}{dx}+zp(x)=q(x). \ \ \ \ \ (3)}$

这就化为了关于 $ x$ 和 $ z$ 的一阶线性方程.

化 Bernoulli 方程为一阶线性微分方程的更多相关文章

  1. Python-sympy科学计算与数据处理(方程,微分,微分方程,积分)

    方程 a,b,c,x = symbols("a b c x") my_eq = Eq(a*x**2+b*x+c,0) solve(my_eq,x) Out[12]: [(-b + ...

  2. Google Code Jam 2008 Round 1A C Numbers(矩阵快速幂+化简方程,好题)

    Problem C. Numbers This contest is open for practice. You can try every problem as many times as you ...

  3. math课本复习

    第七章 微分方程 第一节 微分方程的基本概念    未知函数.未知函数的倒数与自变量之间的关系的方程,叫做微分方程. 第二节 可分离变量的微分方程 第三节 齐次方程 第四节 一阶线性微分方程 总结:任 ...

  4. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  5. 微分方程——基本概念和常微分方程的发展史

    1.2 基本概念和常微分方程的发展史 自变量.未知函数均为实值的微分方程称为实值微分方程:未知函数取复值或变量及未知函数均取复值时称为复值微分方程.若无特别声明,以下均指实变量的实值微分方程. 1.2 ...

  6. 线性SVM的推导

    线性SVM算法的一般过程 线性SVM的推导 超平面方程 SVM是用来分类的.给定一系列输入数据(n维向量),需要找到一个切分界线(n-1维的超平面),这里假定数据是线性可分的.比如,二维数据的超平面是 ...

  7. java实现图像的直方图均衡以及灰度线性变化,灰度拉伸

    写了四个方法,分别实现图片的灰度化,直方图均衡,灰度线性变化,灰度拉伸,其中好多地方特别是灰度拉伸这一块觉得自己实现的有问题,请大大们多多指教. import java.awt.Image; impo ...

  8. 【BZOJ4004】装备购买(线性基)

    [BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...

  9. 线性判别函数-Fisher 线性判别

    这是我在上模式识别课程时的内容,也有参考这里. 线性判别函数的基本概念 判别函数为线性的情况的一般表达式 式中x是d 维特征向量,又称样本向量, 称为权向量, 分别表示为 是个常数,称为阈值权. 设样 ...

随机推荐

  1. 小程序之scroll-view用法 - 水平滚动

    <scroll-view class="box" scroll-x="true" > <view class="box-item&q ...

  2. asp.net数据库增删改查demo

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  3. web.xml的配置过程中也需要注意顺序问题

    配置WEB.XML的配置文件过程中发现: 直接红叉,鼠标放在红叉出信息如下: cvc-complex-type.2.4.a: Invalid content was found starting wi ...

  4. 中文文本分类之CharCNN

    文本分类是自然语言处理中一个非常经典的任务,可用的模型非常多,相关的开源代码也非常多了.这篇博客用一个CNN模型,对新闻文本进行分类. 全部代码有4个模块:1.数据处理模块(命名为:cnews_loa ...

  5. 01-JAVA语言基础——课后动手动脑

    1.一个java类文件中真的只能有一个公有类吗? 请使用Eclipse或javac检测一下以下代码,有错吗? public class Test{    public static void main ...

  6. ZOJ 3791 An easy game DP+组合数

    给定两个01序列,每次操作可以任意改变其中的m个数字 0变 1  1 变 0,正好要变化k次,问有多少种变法 dp模型为dp[i][j],表示进行到第i次变化,A,B序列有j个不同的 变法总和. 循环 ...

  7. 201771010142-张燕 实验一 软件工程准备—<软件工程的初步了解和学习目标>

    实验一 软件工程准备 项目 内容 软件工程 https://www.cnblogs.com/nwnu-daizh/ 软件工程准备要求 https://www.cnblogs.com/nwnu-daiz ...

  8. ACM-Work Assignment

    题目描述:Work Assignment   设有n件工作分配给n个人.将工作i 分配给第j 个人所需的费用为Cij.试设计一个算法,为每一个人都分配1 件不同的工作,并使总费用达到最小. 设计一个算 ...

  9. ACM-Special Array

    题目描述:Special array   输入n和m(20>=m>=n>0)求出所有满足以下方程的正整数数列 i1,i2,...,in,使i1+i2+...+in=m,且i1> ...

  10. mybatis基础CURD的学习

    <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE mapper PUBLIC "- ...