Description

7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。

设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。

由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。

令Q = Sπ

请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。

(除Q外,以上所有数据皆为正整数)

Input

有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。

Output

仅一行,是一个正整数S(若无解则S = 0)。

Sample Input

100

2

Sample Output

68

Solution

由于深度一定(m),所以使用深度优先搜索,自上而下的设定蛋糕序号,最顶层的为第1层,……,最底层的蛋糕为第m层,很明显满足题目条件的前i层的(从顶层(也就是编号为1的层)开始计数)最小面积mins[i]和体积minv[i]是在该层的半径以及高度都为i时取得,如果采用一般的神搜肯定会超时,所以这题还需要剪枝,剪枝条件有(从m层向上搜,假设前level层的体积为v,面积为s,当前所得的最小面积为best):

1>因为前level层的体积为v,如果剩下的几层的体积都取最小可能值,总体积还是比n大,那么则说明前level层的方案不可行,所以可以剪枝(剪枝条件为:v+minv[dep-1]>n)

2>因为前level层的面积为s,如果剩下的几层的面积都取最小可能值,所得的面积和比已经得到的所求的最小面积best大,也可以进行剪枝(剪枝条件为:s+mins[dep-1]>best)

3>因为前level层的体积为v,那么剩余的m-level层的体积满足:n-v=(hk+……+hm)(k=level+1,……,m)

而剩余部分的表面积满足:lefts=2*(r[k]h[k]+……+r[m]h[m])>2(n-sv)/r[level] (k=level+1,……,m)

显然有上述不等式lefts=best-s>2
(n-)/r,即2*(n-v)/r+s

#include<stdio.h>
#define in(a,b) (a<b?a:b)
int n,m;
int minv[21],mins[21];
int bests; void dfs(int v,int s,int level,int r,int h)//level为搜索深度,从底层m层向上搜,r,h分别为该层的半径和高度
{
if(level==0)//搜索完成,则更新最小面积值
{
if(v==n&&s<bests)
bests=s;
return ;
}
if(v+minv[level-1]>n||s+mins[level-1]>bests||2*(n-v)/r+s>=bests)//剪枝
return ;
int i,j,hh;
for(i=r-1;i>=level;i--)//按递减顺序枚举level层蛋糕半径的每一个可能值,这里第level层的半径最小值为level
{
if(level==m)//底面积作为外表面积的初始值(总的上表面积,以后只需计算侧面积)
s=i*i;
hh=in((n-v-minv[level-1])/(i*i),h-1); //最大高度,即level层蛋糕高度的上限,(n-v-minv[level-1])表示第level层最大的体积
for(j=hh;j>=level;j--)//同理,第level层的最小高度值为level
dfs(v+i*i*j,s+2*i*j,level-1,i,j);//递归搜索子状态
}
}
int main()
{
int i;
minv[0]=0;
mins[0]=0;
for(i=1;i<=20;i++)//从顶层向下计算出最小体积和表面积的可能值
{
//从顶层(即第一层)到第i层的最小体积minv[i]成立时第j层的半径和高度都是j
minv[i]=minv[i-1]+i*i*i;
mins[i]=mins[i-1]+2*i*i;
}
while(scanf("%d%d",&n,&m)==2)
{
bests=0x7fffffff;
dfs(0,0,m,n+1,n+1);
if(bests==0x7fffffff)
printf("0\n");
else
printf("%d\n",bests);
}
return 0;
}

DFS--POJ 1190 生日蛋糕的更多相关文章

  1. POJ 1190 生日蛋糕 【DFS + 极限剪枝】

    题目传送门:http://poj.org/problem?id=1190 参考剪枝:https://blog.csdn.net/nvfumayx/article/details/6653111 生日蛋 ...

  2. POJ 1190 生日蛋糕(DFS)

    生日蛋糕 Time Limit: 1000MSMemory Limit: 10000KB64bit IO Format: %I64d & %I64u Submit Status Descrip ...

  3. POJ - 1190 生日蛋糕 dfs+剪枝

    思路:说一下最重要的剪枝,如果当前已经使用了v的体积,为了让剩下的表面积最小,最好的办法就是让R尽量大,因为V = πR 2H,A' = 2πRH,A' = V / R * 2 ,最大的R一定是取当前 ...

  4. POJ 1190 生日蛋糕题解

    题目地址:http://poj.org/problem?id=1190 一道很有趣的搜索题--主要是剪枝-- 我弄了5个剪枝: 1.当前剩余层数>=上层半径,剪掉 2.当前剩余层数>=上层 ...

  5. Codevs 1710 == POJ 1190 生日蛋糕 == 洛谷P1731

    生日蛋糕 时间限制: 2 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ ...

  6. poj 1190 生日蛋糕 , 强剪枝

    题意: 制作一个体积为Nπ(N<=10000)的M(M<=20)层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆 ...

  7. POJ 1190 生日蛋糕 剪枝

    Description 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri ...

  8. 洛谷 P1731 [NOI1999]生日蛋糕 && POJ 1190 生日蛋糕

    题目传送门(洛谷)  OR 题目传送门(POJ) 解题思路: 一道搜索题,暴力思路比较容易想出来,但是这道题不剪枝肯定会TLE.所以这道题难点在于如何剪枝. 1.如果当前状态答案已经比我们以前某个状态 ...

  9. poj 1190 生日蛋糕

    中文题 题目分析 搜索题,非常好的剪枝 由于深度一定(m),所以使用深度优先搜索,自上而下的设定蛋糕序号,最顶层的为第1层,……,最底层的蛋糕为第m层,很明显满足题目条件的前i层的(从顶层(也就是编号 ...

  10. poj 1190 DFS 不等式放缩进行剪枝

    F - (例题)不等式放缩 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submi ...

随机推荐

  1. django类视图的装饰器验证

    django类视图的装饰器验证 django类视图的get和post方法是由View内部调用dispatch方法来分发,最后调用as_view来完成一个视图的流程. 函数视图可以直接使用对应的装饰器 ...

  2. Linux ssh登录出错

    今天登录远程主机的时候,出现了以下错误: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @    WARNING: REMOT ...

  3. 个人项目 wc.exe

    GitHub地址:https://github.com/oAiuo/wordCount 一.题目描述 Word Count1. 实现一个简单而完整的软件工具(源程序特征统计程序).2. 进行单元测试. ...

  4. winform怎么实现财务上凭证录入和打印

    序言 现如今存在的财务软件层出不穷,怎么样让自己的业务系统与财务系统相结合,往往是很多公司头痛的问题.大多数公司也没有这个能力都去开发一套属于自己的财务软件,所以只有对接像金蝶用友这类的财务软件,花费 ...

  5. mysql 多个属性排序查询

    查询 排序(order by) 语法:order by 字段 asc/desc asc 顺序,正序.数值 :递增,字母:自然顺序(a-z) desc 倒序 反序 数值:递减, 字母:自然反序 查询的宗 ...

  6. CentOS 7 yum安装 k8s 创建Pod一直处于ContainerCreating状态 问题解决

    问题描述 使用CentOS7的 yum 包管理器安装了 Kubernetes 集群,使用 kubectl 创建服务成功后,执行 kubectl get pods,发现AGE虽然在不断增加,但状态始终不 ...

  7. Nginx如何来配置隐藏入口文件index.php(代码)

    Nginx配置文件里放入这段代码 server { location / { index index.php index.html index.htm l.php; autoindex on; if ...

  8. AJ学IOS(46)之网易彩票幸运大转盘

    AJ分享,必须精品 效果 实现过程: 基础UI搭建 这里主要是用了xib搭建,首先我们分析,有中间的开始按钮,背景图片,还有星座按钮,这里能用xib做的事开始按钮和背景图片. 如图: 星座按钮的搭建: ...

  9. B. 复读机的力量

    我们规定一个人是复读机当且仅当他说的每一句话都是复读前一个人说的话. 我们规定一个人是复读机当且仅当他说的每一句话都是复读前一个人说的话. 我们规定一个人是复读机当且仅当他说的每一句话都是复读前一个人 ...

  10. Closest Common Ancestors POJ 1470

    Language: Default Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissio ...