simhash算法:海量千万级的数据去重
simhash算法:海量千万级的数据去重
simhash算法及原理参考:
简单易懂讲解simhash算法 hash 哈希:https://blog.csdn.net/le_le_name/article/details/51615931
simhash算法及原理简介:https://blog.csdn.net/lengye7/article/details/79789206
使用SimHash进行海量文本去重:https://www.cnblogs.com/maybe2030/p/5203186.html#_label3
python实现:
python使用simhash实现文本相似性对比(全代码展示):https://blog.csdn.net/weixin_43750200/article/details/84789361
simhash的py实现:https://blog.csdn.net/gzt940726/article/details/80460419
python库simhash使用
详情请查看:https://leons.im/posts/a-python-implementation-of-simhash-algorithm/
(1) 查看simhash值
>>> from simhash import Simhash
>>> print '%x' % Simhash(u'I am very happy'.split()).value
9f8fd7efdb1ded7f
Simhash()接收一个token序列,或者叫特征序列。
(2)计算两个simhash值距离
>>> hash1 = Simhash(u'I am very happy'.split())
>>> hash2 = Simhash(u'I am very sad'.split())
>>> print hash1.distance(hash2)
(3)建立索引
simhash被用来去重。如果两两分别计算simhash值,数据量较大的情况下肯定hold不住。有专门的数据结构,参考:http://www.cnblogs.com/maybe2030/p/5203186.html#_label4
from simhash import Simhash, SimhashIndex
# 建立索引
data = {
u'': u'How are you I Am fine . blar blar blar blar blar Thanks .'.lower().split(),
u'': u'How are you i am fine .'.lower().split(),
u'': u'This is simhash test .'.lower().split(),
}
objs = [(id, Simhash(sent)) for id, sent in data.items()]
index = SimhashIndex(objs, k=10) # k是容忍度;k越大,检索出的相似文本就越多
# 检索
s1 = Simhash(u'How are you . blar blar blar blar blar Thanks'.lower().split())
print index.get_near_dups(s1)
# 增加新索引
index.add(u'', s1)
simhash算法:海量千万级的数据去重的更多相关文章
- 提高mysql千万级大数据SQL查询优化30条经验(Mysql索引优化注意)
转自http://blog.163.com/zhangjie_0303/blog/static/9908270620146951355834/ 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 w ...
- (转)提高mysql千万级大数据SQL查询优化30条经验(Mysql索引优化注意)
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...
- (转载)提高mysql千万级大数据SQL查询优化30条经验(Mysql索引优化注意)
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...
- mysql千万级大数据SQL查询优化
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...
- mysql千万级大数据SQL查询优化30条经验
转自http://blog.163.com/zhangjie_0303/blog/static/9908270620146951355834/ 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 w ...
- Mysql千万级大数据量查询优化
来源于:https://blog.csdn.net/A350204530/article/details/79040277 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 ord ...
- 30个mysql千万级大数据SQL查询优化技巧详解
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...
- Sql server 千万级大数据SQL查询优化的几点建议
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...
- 千万级大数据的Mysql数据库SQL语句优化
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...
随机推荐
- CSS display的几个常用的属性值,inline , block, inline-block
1.解释一下display的几个常用的属性值,inline , block, inline-block inline(行内元素): 使元素变成行内元素,拥有行内元素的特性,即可以与其他行内元素共享一行 ...
- Angularjs E2E test Report/CoverageReport
前端Angularjs是一个很热门的框架,这篇是学习基于Angularjs的nodejs平台的E2E测试报告和E2E JS覆盖率报告.用到的都是现有的工具,只是一些配置的地方需要注意. 环境前提: 1 ...
- 绝对好用Flash多文件大文件上传控件
本实例采用的是Uploadify上传插件,.NET程序,源程序是从网上找的,但是有Bug,已经修改好,并标有部分注释.绝对好用,支持单文件.多文件上传,支持大文件上传,已经过多方面测试,保证好用. 以 ...
- IDEA离线更新
因为在hosts文件添加以下dns添加 0.0.0.0 account.jetbrains.com 0.0.0.0 www.jetbrains.com 导致IDEA自动更新失败.手工下载回更新文件IU ...
- 安装好oracle11gR2之后在相应路径下却没有生成tnsnames.ora和listener.ora
oracle安装帖子:https://blog.csdn.net/wjb123sw99/article/details/80780277 oracle安装过程中检查失败:需开启C盘共享,或者勾选忽略, ...
- java中instanceof的基本使用
java中的instanceof运算符是用于判断对象是否是指定类或这个指定类的子类的一个实例,返回值是布尔类型. 语法: boolean result = object instanceof clas ...
- Docker-Compose运行Nginx+Redis+NetCoreAPI
Docker-Compose运行Nginx+Redis+NetCoreAPI 一.准备Docker-Compose Docker 开始安装Docker-compose之前你需要先确认已经安装了Dock ...
- 解析之Apache解析
- elk logstash Managing Multiline Events
1.Java程序的日志特征,logstash 正为此准备好了 codec/multiline 插件! 有时候应用程序会抛异常,就存在着如何合并多行信息的问题,我这里做的配置就是如果当前行是以‘空格’, ...
- 小菜鸟之Oracle数据库之事务
Oracle数据库之事务 1. 什么是事务 在数据库中事务是工作的逻辑单元,一个事务是由一个或多个完成一组的相关行为的SQL语句组成,通过事务机制确保这一组SQL语句所作的操作要么都成功执行,完成整个 ...