思路:斜率优化

提交:\(2\)次

错因:二分写挂

题解:

首先观察可知,



对于点\(f(X,Y)\),一定是由某个点\((1,p)\),先向下走,再向右下走。

并且有个显然的性质,若从\((1,p)\)向下走,则\(a[p]=min(a[i]),i\in [p,Y]\)(要不然直接从后面的更小的那个位置向下走,再向右下走)

还有一个显然的性质,若\(i<j\)且\(i\)比\(j\)更优,则\(a[i]>a[j]\)(上面的结论)

设\(s[i]=\sum_{j=i}^i a[j]\)

那么对于点\(f(X,Y)\)有\(ans=s[Y]-s[i]+a[i]*(X-Y+i),i\in [max(1,Y-X),Y]\)

这个式子是可以斜率优化的:\(s[i]-a[i]*i=(X-Y)*a[i]+s[Y]-ans\)

要最小化\(ans\),就是最大化\(s[Y]-ans\),所以我们用单调栈维护下降斜率(上凸包),每次先查找合法区间\(i\in [max(1,Y-X),Y]\),然后再在单调栈中二分斜率。

#include<cstdio>
#include<iostream>
#include<algorithm>
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0;
register I f=1; register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=1e5+10;
int n,m,a[N],s[N],stk[N],ans[N],t;
struct node {int x,y,p;
inline bool operator < (const node& that) const {return y<that.y;}
}b[N];
inline int getlim(int pos) {
R l=1,r=t; while(l<r) { R md=l+r>>1;
if(stk[md]<pos) l=md+1; else r=md;
} return l;
}
inline double calc(int i,int j) {return ((double)(s[i]-a[i]*i)-(double)(s[j]-a[j]*j))/(double)(a[i]-a[j]);}
inline void main() {
g(n); for(R i=1;i<=n;++i) g(a[i]),s[i]=s[i-1]+a[i];
g(m); for(R i=1;i<=m;++i) g(b[i].x),g(b[i].y),b[i].p=i;
sort(b+1,b+m+1); for(R i=1,j=1;i<=n;++i) {
while(t&&a[stk[t]]>=a[i]) --t;
while(t>1&&calc(stk[t],i)>=calc(stk[t-1],i)) --t;
stk[++t]=i; while(b[j].y==i&&j<=m) {
R l=getlim(b[j].y-b[j].x),r=t;
while(l<r) { R md=l+r>>1;
if(calc(stk[md],stk[md+1])<b[j].x-b[j].y) r=md;
else l=md+1;
} l=stk[l],r=b[j].y;
ans[b[j].p]=s[r]-s[l]+a[l]*(b[j].x-r+l); ++j;
}
} for(R i=1;i<=m;++i) printf("%d\n",ans[i]);
}
} signed main() {Luitaryi::main(); return 0;}

2019.08.12

88

51nod 1488 帕斯卡小三角 斜率优化的更多相关文章

  1. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

  2. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  3. bzoj3437小P的牧场 斜率优化dp

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discus ...

  4. 斜率优化入门学习+总结 Apio2011特别行动队&Apio2014序列分割&HZOI2008玩具装箱&ZJOI2007仓库建设&小P的牧场&防御准备&Sdoi2016征途

    斜率优化: 额...这是篇7个题的题解... 首先说说斜率优化是个啥,额... f[i]=min(f[j]+xxxx(i,j)) ;   1<=j<i (O(n^2)暴力)这样一个式子,首 ...

  5. [小A与最大子段和][斜率优化dp+二分]

    链接:https://ac.nowcoder.com/acm/contest/545/A来源:牛客网题目描述 小A在网上看到了 "最大子段和" 问题的解法.第二天,小A向小B讲解了 ...

  6. 【BZOJ3437】小P的牧场 斜率优化

    [BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...

  7. 【BZOJ3437】小P的牧场(动态规划,斜率优化)

    [BZOJ3437]小P的牧场(动态规划,斜率优化) 题面 BZOJ 题解 考虑暴力\(dp\),设\(f[i]\)表示强制在\(i\)处建立控制站的并控制\([1..i]\)的最小代价. 很显然,枚 ...

  8. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  9. BZOJ3437:小P的牧场(斜率优化DP)

    Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...

随机推荐

  1. (一)Shiro,久闻其名,而今初相识

    文章目录 shiro简介 功能介绍 从外部看 Shiro 架构 从内部看 Shiro 架构 多说一句,在学习shiro之前,我觉得应该先用 filter ,自己动手写过粗粒度的权限系统,而不要一上来就 ...

  2. Python-02-基础知识

    一.第一个Python程序 [第一步]新建一个hello.txt [第二步]将后缀名txt改为py [第三步]使用记事本编辑该文件 [第四步]在cmd中运行该文件 print("Hello ...

  3. 函数的第一类对象,f格式化,迭代器以及递归

    函数名的第一类对象及使用,f格式化以及迭代器 1.函数的第一类对象 第一类对象 --特殊点 1.可以当作值被赋值给变量 def func(): print(1) a = func a() 2.可以当作 ...

  4. BBS项目架构

    数据库设计 用户表(用的是auth_user那张表,通过自定义表继承AbstractUser) phone 电话 avatar 头像 create_time 创建时间#外键 blog 一对一个人站点表 ...

  5. pandas之时间序列笔记

    时间戳tiimestamp:固定的时刻->pd.Timestamp 固定时期period:比如2016年3月份,再如2015年销售额->pd.Period 时间间隔interval:由起始 ...

  6. 解决阿里云OSS The requested bucket name is not available的办法

    今天在创建Bucket的时候遇到了这个问题 The requested bucket name is not available. The bucket namespace is shared by ...

  7. windows + Eclipse

    https://www.eclipse.org/downloads/index-packages.php 下载好后是一个压缩文件,解压并放到相要存放软件的目录,双击打开解压后的目录下eclipse.e ...

  8. Asp.netCore 的Startup 不继承接口

    有一个问题: Asp.netCore 的Startup 要实现 Config 和ConfigServie 方法, 为什么不接口约束呢. 进入源码: // // 摘要: // /// Specify t ...

  9. LunHui 的生命观

    LunHui 的生命观 来源 https://www.zhihu.com/question/346510295 作者:齐天大圣链接:https://www.zhihu.com/question/346 ...

  10. ajax中的事件

    blur : 当光标移开时(点击)触发 change : 当光标移开并且文本框中的内容和上一次不一致时(点击)触发