传送门

对于询问,首先如果正数数量不到 $c$ 个显然无解

然后如果大于等于 $s$ 的数大于等于 $c$ 个,那么显然有解

否则,考虑贪心地取数,首先初始大于等于 $s$ 的哪些数我们每次取都可以取到,所以直接把 $c-cnt$ ,其中 $cnt$ 是初始大于等于 $s$ 的数的个数

然后考虑剩下的哪些数的情况如何才能保证最终有解

发现剩下的数似乎只要总和大于等于 $c*s$ 就一定有解,证明可以这样考虑:

把剩下的数拆成若干个 $1$ 并重新组合,最终一定可以组合出 $c$ 个值为 $s$ 的数

考虑把每个 $1$ 都打上标记记录原本属于哪个数,重新组合以后对于每次 $-1$ 的操作,我们根据标记可以看成把标记表示的原本的数减 $1$

这样最终一定有解,所以证明完成

然后用线段树维护一下即可

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e6+;
int n,m,a[N],d[N],inv[N];
int t[N<<];
ll sum[N<<];
inline void pushup(int o) { t[o]=t[o<<]+t[o<<|]; sum[o]=sum[o<<]+sum[o<<|]; }
void change(int o,int l,int r,int pos,int v)
{
if(l==r) { t[o]+=v; sum[o]+=1ll*v*inv[l]; return; }
int mid=l+r>>;
pos<=mid ? change(o<<,l,mid,pos,v) : change(o<<|,mid+,r,pos,v);
pushup(o);
}
ll query2(int o,int l,int r,int qr)
{
if(r<=qr) return sum[o];
int mid=l+r>>;
if(mid<qr) return sum[o<<]+query2(o<<|,mid+,r,qr);
return query2(o<<,l,mid,qr);
}
int query3(int o,int l,int r,int pos)
{
if(l==r) return t[o];
int mid=l+r>>;
if(pos<=mid) return t[o<<|]+query3(o<<,l,mid,pos);
return query3(o<<|,mid+,r,pos);
}
char s[N]; int da[N],db[N];
int main()
{
n=read(),m=read();
for(int i=;i<=m;i++)
{
scanf("%s",&s[i]); da[i]=read(),db[i]=read();
d[i]=db[i];
}
sort(d+,d+m+); int tot=unique(d+,d+m+)-d-;
for(int i=;i<=m;i++)
{
int t=db[i]; db[i]=lower_bound(d+,d+tot+,db[i])-d;
inv[db[i]]=t;
}
int cnt=;
for(int i=;i<=m;i++)
{
if(s[i]=='U')
{
if(a[da[i]]) change(,,tot,a[da[i]],-);
else cnt++;
a[da[i]]=db[i]; change(,,tot,db[i],);
}
if(s[i]=='Z')
{
if(da[i]>cnt) { printf("NIE\n"); continue; }
int t=da[i]-query3(,,tot,db[i]);
if(t<=) { printf("TAK\n"); continue; }
if(1ll*t*inv[db[i]]<=query2(,,tot,db[i]-)) printf("TAK\n");
else printf("NIE\n");
}
}
return ;
}

P3586 [POI2015]LOG的更多相关文章

  1. 洛谷 P3586 [POI2015]LOG

    P3586 [POI2015]LOG 题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它 ...

  2. 洛谷P3586 [POI2015]LOG(贪心 权值线段树)

    题意 题目链接 Sol 显然整个序列的形态对询问没什么影响 设权值\(>=s\)的有\(k\)个. 我们可以让这些数每次都被选择 那么剩下的数,假设值为\(a_i\)次,则可以\(a_i\)次被 ...

  3. 树状数组【洛谷P3586】 [POI2015]LOG

    P3586 [POI2015]LOG 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1 ...

  4. [POI2015]LOG(树状数组)

    今天考试考了这题,所以来贡献\([POI2015]LOG\)的第一篇题解.代码略丑,调了快三个小时才调出来\(AC\)代码. 对于这种小清新数据结构题,所以我觉得树状数组才是这道题的正确打开方式. 首 ...

  5. 【洛谷P3586】LOG

    题目大意:维护一个集合,支持单点修改.查询小于 X 的数的个数.查询小于 X 的数的和. 题解:学习到了动态开点线段树.对于一棵未经离散化的权值线段树来说,对于静态开点来说,过大的值域会导致不能承受的 ...

  6. [POI2015]LOG

    题目 发现询问是针对整个区间,也就是说位置什么用都没有 发现我们需要构造出\(s\)个长度为\(c\)的数列,每个数只能在一个数列中出现一次,且一个数最多的使用次数是其大小 对于那些大于等于\(s\) ...

  7. Luogu 3586 [POI2015]LOG

    考虑离散化后开权值线段树. 设序列中不小于$s$的数有$cnt$个,小于$s$的数的和为$sum$. 那么操作Z能成功的充要条件是$sum \geq (c - cnt) * s$. 如果序列中不小于$ ...

  8. HBSX2019 3月训练

    Day 1 3月有31天废话 今天先颓过了就只剩30天了 初步计划 每天一道字符串/数据结构题 图论学习 根据<若干图论模型探讨>(lyd)复习 二分图与网络流学习 <算法竞赛进阶指 ...

  9. POI2015 解题报告

    由于博主没有BZOJ权限号, 是在洛咕做的题~ 完成了13题(虽然有一半难题都是看题解的QAQ)剩下的题咕咕咕~~ Luogu3585 [POI2015]PIE Solution 模拟, 按顺序搜索, ...

随机推荐

  1. windows 安装多个版本的jdk后修改 环境变量不起作用

    本机已经安装了jdk1.6,而比较早期的项目需要依赖jdk1.5,于是同时在本机安装了jdk1.5和jdk1.6. 安装jdk1.5前,执行java -version得到java version &q ...

  2. DL反向传播理解

    作者:寒小阳 时间:2015年12月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50321873 声明:版权所有,转载请联系作者并注明 ...

  3. While 循环 kotlin(11)

    While 循环while 和 do .. while 照常使用 while (x > 0) { x--} do { val y = retrieveData()} while (y != nu ...

  4. [学习笔记] Tangent Distance

    Tangent Distance 简介 切空间距离可以用在KNN方法中度量距离,其解决的是图像经过有限变换之后还能否被分类正确,例如.对一张数字为5的手写数字图片,将其膨胀后得到图像p1,此时KNN还 ...

  5. layui表格遇到的小操作

    表头文字显示不全 done:function(res){ tdTitle() }, /*表头文字显示不全*/ function tdTitle(){ $('th').each(function(ind ...

  6. Javascript和JQuery获取浏览器窗口各种尺寸

    原生JS 窗口尺寸: console.log('window.innerWidth = ' + window.innerWidth + '---window.innerHeight = ' + win ...

  7. 20 Django REST Framework 更改PUT/PATCH/DELETE的传参字段,默认为pk

    01-lookup_field 默认为 lookup_field='pk' 更改后的效果:

  8. JMeter使用plugins插件进行服务器性能监控

    JMeter使用plugins插件进行服务器性能监控 性能测试时,我们的关注点有两部分 1 服务本身:并发响应时间 QPS 2 服务器的资源使用情况:cpu memory I/O disk等 JMet ...

  9. C++ 中set

    set特点: 所有元素不会重复,重复插入已经有的新值无效: 所有元素按顺序排列:unordered_set除外 键和值相同,所以set中的值是不可更改的 set的各成员函数列表如下: 1.begin( ...

  10. 使用jdk自带工具jvisualvm 分析内存dump文件

    1.获取dump文件 使用 以下命令 创建 进程PID = 16231的 dump文件,命名为 order.hprof jmap -dump:format=b,file=order.hprof 162 ...