悬线法,虽然得不到局部最优解,但是一定能得到全局最优解的算法,十分神奇~

#include <cstdio>
#include <algorithm>
#define N 2003
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,m,ans1,ans2;
int v[N][N],l[N][N],r[N][N],up[N][N],len[N][N];
int main()
{
int i,j;
// setIO("input");
scanf("%d%d",&n,&m);
for(i=1;i<=n;++i)
{
for(j=1;j<=m;++j)
scanf("%d",&v[i][j]),l[i][j]=r[i][j]=j, up[i][j]=1,len[i][j]=1;
}
for(i=1;i<=n;++i)
{
for(j=2;j<=m;++j) if(v[i][j]!=v[i][j-1]) l[i][j]=l[i][j-1];
for(j=m-1;j>=1;--j) if(v[i][j]!=v[i][j+1]) r[i][j]=r[i][j+1];
}
for(i=1;i<=n;++i)
{
for(j=1;j<=m;++j)
{
if(i>1 && v[i][j]!=v[i-1][j])
{
l[i][j]=max(l[i][j], l[i-1][j]);
r[i][j]=min(r[i][j], r[i-1][j]);
up[i][j]=up[i-1][j]+1;
}
ans1=max(ans1, up[i][j]*(r[i][j]-l[i][j]+1));
}
}
for(i=1;i<=n;++i)
{
for(j=1;j<=m;++j)
{
if(i>1&&j>1&&v[i][j]!=v[i][j-1]&&v[i][j]!=v[i-1][j]&&v[i][j]==v[i-1][j-1])
{
len[i][j]=min(len[i][j-1], min(len[i-1][j], len[i-1][j-1]))+1; }
}
}
for(i=1;i<=n;++i)
{
for(j=1;j<=m;++j) ans2=max(ans2, len[i][j]*len[i][j]);
}
printf("%d\n%d\n",ans2,ans1);
return 0;
}

  

luogu 1169 [ZJOI2007]棋盘制作 悬线dp的更多相关文章

  1. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  2. 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划

    P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...

  3. P1169 [ZJOI2007]棋盘制作 && 悬线法

    P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...

  4. [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵

    https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...

  5. P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  6. P1169 [ZJOI2007]棋盘制作 悬线法or单调栈

    思路:悬线法\(or\)单调栈 提交:2次 错因:正方形面积取错了\(QwQ\) 题解: 悬线法 讲解:王知昆\(dalao\)的\(PPT\) 详见代码: #include<cstdio> ...

  7. P1169 [ZJOI2007]棋盘制作——悬线法

    ---恢复内容开始--- 给你一个矩阵,选出最大的棋盘,棋盘的要求是黑白相间(01不能相邻),求出最大的正方形和矩形棋盘的面积: 数据n,m<=2000; 这个一看就可能是n2DP,但是写不出. ...

  8. Luogu 1169 [ZJOI2007]棋盘制作 - 动态规划+单调栈

    Description 给一个01矩阵, 求出最大的01交错的正方形和最大的01交错的矩阵 Solution 用动态规划求出最大的正方形, 用单调栈求出最大的矩阵. 在这里仅介绍求出最大正方形(求最大 ...

  9. [luogu P1169] [ZJOI2007]棋盘制作

    [luogu P1169] [ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的 ...

随机推荐

  1. 【Python】**kwargs和takes 1 positional argument but 2 were given

    Python的函数定义中可以在参数里添加**kwargs——简单来说目的是允许添加不定参数名称的参数,并作为字典传递参数.但前提是——你必须提供参数名. 例如下述情况: class C(): def ...

  2. Python 【for/while循环】

    循环语句for...in..循环语句 1.空房间 #元素(item) 可以当成是一个变量 for i in [1,2,3,4,5]: #变量i是“空房间” print(i) #有一群数字在排队办业务, ...

  3. 10.使用du将文件按大小进行排序

    按G进行排序du -sh * | grep G | sort -nr

  4. HTML form表单中action的正确写法

    我的Java Web Application的context是myweb,即http://localhost:8080/myweb/index.jsp是欢迎页. 现在我的一个Controller的映射 ...

  5. MySQL 聚合函数与count()函数

    一.MySQL中的聚合函数 MySQL 5.7文档的章节:12.20.1 Aggregate (GROUP BY) Function “聚合/组合”函数(group (aggregate) funct ...

  6. idea中创建的go项目,添加project sdk时没有go sdk选项的解决方式

    同样是后端开发,年薪50万和年薪20万的差距在哪里>>> 更新: 为了防止你被我这个流水账气到,先看这个结论吧:这个问题的结局方法:忽略,没有什么影响. -------------- ...

  7. Windows 编程 键盘

    键盘对于大家来说可能再也熟悉不过了,它和鼠标是现在最常用的电脑输入设备.虽然在现在的图形界面操作系统下使用鼠标比使用键盘更方便.更广泛,但是鼠标还是一时半会儿取代不了它的老前辈——键盘的地位,尤其是在 ...

  8. iview-admin部署linux nginx报500错误的问题记录

    遇到个新服务器部署iview-admin之后 在nginx配置文件有个user配置项 这里需要配置为root或者可以读取本地文件的用户 站点配置如下 server { listen ; server_ ...

  9. 用101000张图片实现图像识别(算法的实现和流程)-python-tensorflow框架

    一个月前,我将kaggle里面的food-101(101000张食物图片),数据包下载下来,想着实现图像识别,做了很长时间,然后自己电脑也带不动,不过好在是最后找各种方法实现出了识别,但是准确率真的非 ...

  10. Google自动打印

    浏览器打印功能,有很多小伙伴可能不太清楚,这里我们可以学习一下. 情景:开发一个需要打印小票的项目.(在订单页里,给客户添加一个打印的操作) 1.假设打印机已经连接好了 2.我们这一节用的浏览器是Go ...