题意

有n个格子,标号为0 ~ n-1,每个格子上有若干石子,每次操作可以选一个0 ~ n-2的格子上的一颗石子,分裂为两颗,然后任意放在后面的两个格子内,这两个格子可以相同.求使先手必胜的第一步的方案数以及最小字典序的方案.

分析

每一个石子都是独立的,所以考虑某一位上的一颗石子的SG函数,再异或起来就行了.实际上只用异或石子数为奇数的,因为偶数个石子异或两次相当于没有异或.

我们先把位置反向并从1~n标号,也就是最后边是1,最左边是n.这样就能对不同的n用同样的SG函数

那么对于位置iii,它的SG函数如下:

SG[i]=mex{ ∪i>j>=kSG[j] xor SG[k] }SG[i]=mex\{\ \cup_{i>j>=k}SG[j]\ xor\ SG[k] \ \}SG[i]=mex{ ∪i>j>=k​SG[j] xor SG[k] }

所以说直接预处理就行了

求方案的时候,注意字典序最小反序后就是字典序最大,所以要从大到小枚举

CODE

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
template<typename T>void read(T &num) {
char ch; int flg=1;
while((ch=getchar())<'0'||ch>'9')if(ch=='-')flg=-flg;
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
num*=flg;
}
const int MAXN = 22;
int SG[MAXN], n, A[MAXN], vis[50]; //vis要开大点,SG函数会超过n
inline void Pre() {
SG[1] = 0;
for(int i = 2; i < MAXN; ++i) {
for(int j = 1; j < i; ++j)
for(int k = j; k < i; ++k)
vis[SG[j]^SG[k]] = i;
for(SG[i] = 0; vis[SG[i]] == i; ++SG[i]);
}
}
inline void solve(int ans) {
int res = 0, ans1 = -1, ans2, ans3;
for(int i = n; i > 1; --i)
for(int j = i-1; j > 0; --j)
for(int k = j; k > 0; --k)
if((ans^SG[i]^SG[j]^SG[k]) == 0) {
++res;
if(!(~ans1))
ans1 = n-i, ans2 = n-j, ans3 = n-k;
}
printf("%d %d %d\n%d\n", ans1, ans2, ans3, res);
}
int main() {
int T; read(T); Pre();
while(T--) {
read(n);
int ans = 0;
for(int i = n; i > 0; --i) {
read(A[i]);
if(A[i]&1) ans ^= SG[i];
}
if(!ans) printf("-1 -1 -1\n0\n");
else solve(ans);
}
}

BZOJ 1188 / Luogu P3185 [HNOI2007]分裂游戏 (SG函数)的更多相关文章

  1. bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理

    [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1394  Solved: 847[Submit][Status][Dis ...

  2. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  3. bzoj 1188 : [HNOI2007]分裂游戏 sg函数

    题目链接 给n个位置, 每个位置有一个小球. 现在两个人进行操作, 每次操作可以选择一个位置i, 拿走一个小球.然后在位置j, k(i<j<=k)处放置一个小球. 问你先进行什么操作会先手 ...

  4. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)

    Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 871  Solved: 365[Submit][Status][Discuss] Description ...

  5. BZOJ 1188 分裂游戏(sg函数)

    如果把每堆巧克力看做一个子游戏,那么子游戏会互相影响. 如果把全部堆看做一个子游戏,那么状态又太多. 如果把每一个单独的巧克力看成一个子游戏的话,那么状态很少又不会互相影响. 令sg[i]表示一个巧克 ...

  6. P3185 [HNOI2007]分裂游戏

    $ \color{#0066ff}{ 题目描述 }$ 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i ...

  7. [HNOI2007]分裂游戏 SG打表博弈

    结论:其实每一个巧克力都是一堆石子 它的石子数就是它到队尾的距离 打一个SG表即可 #include<bits/stdc++.h> using namespace std; typedef ...

  8. bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 733  Solved: 451[Submit][Status ...

  9. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

随机推荐

  1. [Arc102B]All Your Paths are Different Lengths_构造_二进制拆分

    All Your Paths are Different Lengths 题目链接:https://atcoder.jp/contests/arc102/tasks/arc102_b 题解: 构造题有 ...

  2. 究竟什么是Java异常?

    第四阶段 IO 异常处理 没有完美的程序,所以我们需要不断地完善,考虑各种可能性,我们要将除了自己以外的任何用户或者操作者都当成傻子来考虑问题 在我们开发过程中 我们运行时常常会遇到 这样java.l ...

  3. windows 清理 cbs.log 文件

    请参考以下步骤 1.win+r输入 services.msc进入服务,找到并双击Windows Modules Installer点击停止, 2.然后就可以手动删除 3.按一的步骤开启TrustedI ...

  4. Java:集合类的数据结构

    本文源自参考<Think in Java>,多篇博文以及阅读源码的总结 前言 Java的集合其实就是各种基本的数据结构(栈,队列,hash表等),基于业务需求进而演变出的Java特有的数据 ...

  5. Win7原装ISO镜像封装USB3.0&网卡驱动

    Win7原装ISO镜像封装USB3.0&网卡驱动   最新购买的电脑是Windows10系统,想装回Windows7,但是装Windows7发现网络适配器没出现,如果没有USB2.0接口,US ...

  6. 剑指offer1: 组类型——二维数组中的查找(给定一个数字,查找是否在该数组中)

    1. 思路: 缩小范围 2. 方法: (1)要查找的数字等于数组中的数字,结束查找过程: (2)要查找的数字小于数组中的数字,去除该数字右边的数字,在剩下的数字里查找: (3)要查找的数字大于数组中的 ...

  7. PHP学习之PHP trait解析

    自PHP5.4.0起,PHP实现了一种代码复用的方法,称为trait. 众所周知,PHP中是单继承的,trait是为类似PHP的单继承语言而准备得一种代码复用机制.trait为了减少单继承语言的限制, ...

  8. mydumper,myloader原理及实战

    mydumper 特性 (1)多线程备份(和mysqlpump的多线程不同,mysqlpump多线程备份的粒度是表,mydumper多线程备份的粒度是行,这对于备份大表特别有用)(2)因为是多线程逻辑 ...

  9. 6-MySQL DBA笔记-查询优化

    第6章 查询优化 查询优化是研发人员比较关注也是疑问较多的领域.本章首先为读者介绍常用的优化策略.MySQL的优化器.连接机制,然后介绍各种语句的优化,在阅读本章之前,需要先对EXPLAIN命令,索引 ...

  10. Ubuntu 上网

    1.打开终端 2.sudo gedit /etc/wpa_supplicant/wpa_supplicant.conf(回车之后会弹出一个编辑页面,在里面打入第三步里面的配置文件)3.配置文件如下:c ...