F - One Occurrence CodeForces - 1000F (线段树+离线处理)
You are given an array aa consisting of nn integers, and qq queries to it. ii-th query is denoted by two integers lili and riri. For each query, you have to find any integer that occurs exactly once in the subarray of aa from index lili to index riri (a subarray is a contiguous subsegment of an array). For example, if a=[1,1,2,3,2,4]a=[1,1,2,3,2,4], then for query (li=2,ri=6)(li=2,ri=6) the subarray we are interested in is [1,2,3,2,4][1,2,3,2,4], and possible answers are 11, 33 and 44; for query (li=1,ri=2)(li=1,ri=2) the subarray we are interested in is [1,1][1,1], and there is no such element that occurs exactly once.
Can you answer all of the queries?
Input
The first line contains one integer nn (1≤n≤5⋅1051≤n≤5⋅105).
The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤5⋅1051≤ai≤5⋅105).
The third line contains one integer qq (1≤q≤5⋅1051≤q≤5⋅105).
Then qq lines follow, ii-th line containing two integers lili and riri representing ii-th query (1≤li≤ri≤n1≤li≤ri≤n).
Output
Answer the queries as follows:
If there is no integer such that it occurs in the subarray from index lili to index ririexactly once, print 00. Otherwise print any such integer.
Example
Input
61 1 2 3 2 422 61 2
Output
40
题意:
给你一个含有n个数的数组和q个询问,每一个询问给你一个区间l和r,请你输出一个在数组l~r区间中只出现一次的数,如果没有就输出0.
思路:
首先把询问按照r进行升序排序,来离线解决此问题。
我们用线段树维护一个pair<int,int>
first 和second 分别代表 这个位置的数当前位置下标和他前一个出现这个数的下标。
然后去询问区间询问区间中first 的最小值,判断是否比其区间的l小,如果小于则说明区间这个数仅出现一次,它的上一次如果存在的话,是在l左边。
代码实现起来细节还是很多的,多看代码理解一下吧。
其他做法可以参考这个大佬的博客(3个做法):https://blog.csdn.net/lzc504603913/article/details/83310266
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 500010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE code * * STARTS HERE ***/
struct node {
pii num;
int l, r;
} segment_tree[maxn << 2];
void build(int rt, int l, int r)
{
segment_tree[rt].l = l;
segment_tree[rt].r = r;
segment_tree[rt].num = mp(0, 0);
if (l == r) {
return ;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
}
void pushup(int rt)
{
segment_tree[rt].num = min(segment_tree[rt << 1].num, segment_tree[rt << 1 | 1].num);
}
void update(int rt, int pos, int pre)
{
if (segment_tree[rt].l == segment_tree[rt].r && segment_tree[rt].l == pos) {
segment_tree[rt].num.fi = pre;
segment_tree[rt].num.se = pos;
} else {
int mid = segment_tree[rt].l + segment_tree[rt].r >> 1;
if (pos <= mid) {
update(rt << 1, pos, pre);
} else {
update(rt << 1 | 1, pos, pre);
}
pushup(rt);
}
}
pii ask(int rt, int l, int r)
{
if (segment_tree[rt].l >= l && segment_tree[rt].r <= r) {
return segment_tree[rt].num;
}
pii res;
res.fi = inf;
int mid = (segment_tree[rt].r + segment_tree[rt].l) >> 1;
if (l <= mid) {
res = min(res, ask(rt << 1, l, r));
}
if (r > mid) {
res = min(res, ask(rt << 1 | 1, l, r));
}
return res;
}
int a[maxn];
struct aaaaa {
int l;
int r;
int id;
} b[maxn];
bool cmp(aaaaa aa, aaaaa bb)
{
if (aa.r == bb.r) {
return aa.l < bb.l;
} else {
return aa.r < bb.r;
}
}
int last[maxn];
int ans[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
int n;
gbtb;
cin >> n;
build(1, 1, n);
repd(i, 1, n) {
cin >> a[i];
}
int q;
cin >> q;
repd(i, 1, q) {
cin >> b[i].l >> b[i].r;
b[i].id = i;
}
sort(b + 1, b + 1 + q, cmp);
int cur = 1;
repd(i, 1, q) {
for (; cur <= b[i].r; cur++) {
if (last[a[cur]]) {
update(1, last[a[cur]], inf);
}
update(1, cur, last[a[cur]]);
last[a[cur]] = cur;
}
auto temp = ask(1, b[i].l, b[i].r);
if (temp.fi < b[i].l) {
ans[b[i].id] = a[temp.se];
}
}
repd(i, 1, q) {
printf("%d\n", ans[i] );
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
F - One Occurrence CodeForces - 1000F (线段树+离线处理)的更多相关文章
- 线段树+离线 hdu5654 xiaoxin and his watermelon candy
传送门:点击打开链接 题意:一个三元组假设满足j=i+1,k=j+1,ai<=aj<=ak,那么就好的.如今告诉你序列.然后Q次询问.每次询问一个区间[l,r],问区间里有多少个三元组满足 ...
- Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论
Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...
- 牛客练习赛53 E-老瞎眼pk小鲜肉(思维+线段树+离线)
前言 听说是线段树离线查询?? 做题做着做着慢慢对离线操作有点感觉了,不过也还没参透,等再做些题目再来讨论离线.在线操作. 这题赛后看代码发现有人用的树状数组,$tql$.当然能用树状数组写的线段树也 ...
- Codeforces Round #271 (Div. 2) F. Ant colony (RMQ or 线段树)
题目链接:http://codeforces.com/contest/474/problem/F 题意简而言之就是问你区间l到r之间有多少个数能整除区间内除了这个数的其他的数,然后区间长度减去数的个数 ...
- Codeforces Round #271 (Div. 2) F题 Ant colony(线段树)
题目地址:http://codeforces.com/contest/474/problem/F 由题意可知,最后能够留下来的一定是区间最小gcd. 那就转化成了该区间内与区间最小gcd数相等的个数. ...
- Codeforces Round #463 F. Escape Through Leaf (李超线段树合并)
听说正解是啥 set启发式合并+维护凸包+二分 根本不会啊 , 只会 李超线段树合并 啦 ... 题意 给你一颗有 \(n\) 个点的树 , 每个节点有两个权值 \(a_i, b_i\) . 从 \( ...
- Codeforces Round #207 (Div. 1) A. Knight Tournament (线段树离线)
题目:http://codeforces.com/problemset/problem/356/A 题意:首先给你n,m,代表有n个人还有m次描述,下面m行,每行l,r,x,代表l到r这个区间都被x所 ...
- codeforces 522D. Closest Equals 线段树+离线
题目链接 n个数m个询问, 每次询问输出给定区间中任意两个相同的数的最近距离. 先将询问读进来, 然后按r从小到大排序, 将n个数按顺序插入, 并用map统计之前是否出现过, 如果出现过, 就更新线段 ...
- lca 欧拉序+rmq(st) 欧拉序+rmq(线段树) 离线dfs 倍增
https://www.luogu.org/problemnew/show/P3379 1.欧拉序+rmq(st) /* 在这里,对于一个数,选择最左边的 选择任意一个都可以,[left_index, ...
随机推荐
- k-means聚类分析范例程序
K-Means聚类算法原理参考以下链接: https://www.cnblogs.com/pinard/p/6164214.html 2. 传统K-Means算法流程 在上一节我们对K-Means的原 ...
- 解读GitHub EntityComponentSystemSamples
出自Unity官方的ECS项目示例,该项目的第一次Commit是在2018年3月20号,距离现在一年半的时间,这期间ECS本身的生态在快速发展,稳定性也是逐步提升,期待在2020年的Unity版本中作 ...
- 【miscellaneous】多播(组播)原理分析
为什么要使用多播: 网卡从网络上接收到目标物理地址对应的所有bit位都为1的数据报时,会收到这条消息并将其上传给驱动程序,网卡的这种工作模式称为广播模式,网卡的缺省工作模式包含直接模式和 ...
- 【VS开发】【计算机视觉】OpenCV读写xml文件《C++版本》
OpenCV FileStorage类读写XML/YML文件 在OpenCV程序中,需要保存中间结果的时候常常会使用.xml / .yml文件,opencv2.0之前都是使用C风格的代码,当时读写XM ...
- windows下的句柄利用
什么是句柄 维基百科:在程序设计中,句柄(handle)是Windows操作系统用来标识被应用程序所建立或使用的对象的整数.其本质相当于带有引用计数的智能指针.当一个应用程序要引用其他系统(如数据库. ...
- C学习笔记-预备知识
计算机结构组成 CPU(中央处理器)(控制器+运算器) 存储器(内存+外存) 输出设备 输入设备 计算机系统组成 硬件系统 主机 中央处理器 运算器 控制器 内存储器 只读存储器 随机存储器 外部设备 ...
- windows下,给golang编译的exe添加一个图标
通过go build生成的exe文件,通常是一个默认的图标,发给别人的时候,总觉得像病毒,下面我们来给他加一个好看的图标,让他看起来正经一些. 1.找到一个喜欢的图片. 2.通过工具或是在线工具生成. ...
- 基于SpringBoot从零构建博客网站 - 整合ehcache和开发注册登录功能
对于程序中一些字典信息.配置信息应该在程序启动时加载到缓存中,用时先到缓存中取,如果没有命中,再到数据库中获取同时放到缓存中,这样做可以减轻数据库层的压力.目前暂时先整合ehcache缓存,同时预留了 ...
- javascript的一些有用函数记录,不断更新。。。
addLoadEvent函数: 众所周知,html文档加载完后会立即执行一个onload函数.但是onload函数只能包含一个被执行的函数,也就是你需要在加载完文档后执行的一个自己的函数.在实际中ht ...
- PB赋值粘贴
复制:string ls_templs_temp = trim(sle_1.text)Clipboard(ls_temp) 粘贴:string ls_templs_temp = Clipboard() ...